984 resultados para mixed layer depth
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set is a registry of all events conducted during the Tara Oceans Expedition (2009-2013). The registry provides details about the sampling date, time, location and methodology of each event. Uniform resource locators (URLs) offer direct links to the corresponding (1) event logsheet filled on board, (2) environmental data published at PANGAEA, (3) list of samples prepared on board from each event, and (4) nucleotides data published at the European Nucleotides Archive (EBI-ENA).
Resumo:
The Ice Station POLarstern (ISPOL) cruise revisited the western Weddell Sea in late 2004 and obtained a comprehensive set of conductivity-temperature-depth (CTD) data. This study describes the thermohaline structure and diapycnal mixing environment observed in 2004 and compares them with conditions observed more than a decade earlier. Hydrographic conditions on the central western Weddell Sea continental slope, off Larsen C Ice Shelf, in late winter/early spring of 2004/2005 can be described as a well-stratified environment with upper layers evidencing relict structures from intense winter near-surface vertical fluxes, an intermediate depth temperature maximum, and a cold near-bottom layer marked by patchy property distributions. A well-developed surface mixed layer, isolated from the underlying Warm Deep Water (WDW) by a pronounced pycnocline and characterized by lack of warming and by minimal sea-ice basal melting, supports the assumption that upper ocean winter conditions persisted during most of the ISPOL experiment. Much of the western Weddell Sea water column has remained essentially unchanged since 1992; however, significant differences were observed in two of the regional water masses. The first, Modified Weddell Deep Water (MWDW), comprises the permanent pycnocline and was less saline than a decade earlier, whereas Weddell Sea Bottom Water (WSBW) was horizontally patchier and colder. Near-bottom temperatures observed in 2004 were the coldest on record for the western Weddell Sea over the continental slope. Minimum temperatures were ~0.4 and ~0.3 °C colder than during 1992-1993, respectively. The 2004 near-bottom temperature/salinity characteristics revealed the presence of two different WSBW types, whereby a warm, fresh layer overlays a colder, saltier layer (both formed in the western Weddell Sea). The deeper layer may have formed locally as high salinity shelf water (HSSW) that flowed intermittently down the continental slope, which is consistent with the observed horizontal patchiness. The latter can be associated with the near-bottom variability found in Powell Basin with consequences for the deep water outflow from the Weddell Sea.
Resumo:
Hole 997A was drilled during Leg 164 of the Ocean Drilling Program at a depth of 2770 m on the topographic crest of the Blake Ridge in the western Atlantic Ocean. We report here an analysis of the faunal assemblages of planktonic foraminifers in a total of 91 samples (0.39-91.89 mbsf interval) spanning the last 2.15 m.y., latest Pliocene to Holocene. The abundant species, Globigerinoides ruber, Globigerinoides sacculifer, Neogloboquadrina dutertrei, Globorotalia inflata, and Globigerinita glutinata together exceed over ~70% of the total fauna. Each species exhibits fluctuations with amplitudes of 10%-20% or more. Despite their generally low abundance, the distinct presence/absence behavior of the Globorotalia menardii group is almost synchronous with glacial-interglacial climate cycles during the upper part of Brunhes Chron. The quantitative study and factor analysis of planktonic foraminiferal assemblages shows that the planktonic foraminiferal fauna in Hole 997A consists of four groups: warm water, subtropical gyre (mixed-layer species), gyre margin (thermocline/upwelling species), and subpolar assemblages. The subtropical gyre assemblage dominates throughout the studied section, whereas the abundance of gyre margin taxa strongly control the overall variability in faunal abundance at Site 997. In sediments older than the Olduvai Subchron, the planktonic foraminiferal faunas are characterized by fluctuations in both the subtropical gyre and gyre margin assemblages, similar to those in the Brunhes Chron. The upwelling/gyre margin fauna increased in abundance just before the Jaramillo Subchron and was dominant between 0.7 and 1.07 Ma. The transition from this gyre margin-dominated assemblage to an increase in abundance of the subtropical gyre and gyre margin species occurred around 0.7 Ma, near the Brunhes/Matuyama boundary. The presence of low-oxygen-tolerant benthic foraminifers, pyrite tubes, and abundant diatoms below the Brunhes/Matuyama boundary suggests decreased oxygenation of intermediate waters and more upwelling over the Blake-Bahama Outer Ridge, perhaps because of weaker Upper North Atlantic Deep Water ventilation. The changes in the relative composition of foraminifer assemblages took place at least twice, around 700 and 1000 ka, close to the ~930-ka switch from obliquity-forced climate variation to the 100-k.y. eccentricity cycle. The climate shift at 700 ka suggests a transition from relatively warmer conditions in the early Pleistocene to warm-cool oscillations in the Brunhes Chron.
Resumo:
Insight into past changes of upper ocean stratification, circulation, and nutrient signatures rely on our knowledge of the apparent calcification depth (ACD) and ecology of planktonic foraminifera, which serve as archives for paleoceanographic relevant geochemical signals. The ACD of different species varies strongly between ocean basins, but also regionally. We constrained foraminiferal ACDs in the western Pacific warm pool (Manihiki Plateau) by comparing stable oxygen and carbon isotopes (d18Ocalcite, d13Ccalcite) as well as Mg/Ca ratios from living planktonic foraminifera to in-situ physical and chemical water mass properties (temperature, salinity, d18Oseawater, d13CDIC). Our analyses point to Globigerinoides ruber as the shallowest dweller, followed by Globigerinoides sacculifer, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata and Globotaloides hexagonus inhabiting increasingly greater depths. These findings are consistent with other ocean basins; however, absolute ACDs differ from other studies. The uppermost mixed-layer species G. ruber and G. sacculifer denote mean calcification depths of ~95 m and ~120 m, respectively. These Western Pacific ACDs are much deeper than in most other studies and most likely relate to the thick surface mixed layer and the deep chlorophyll maximum in this region. Our results indicate that N. dutertrei appears to be influenced by mixing waters from the Pacific equatorial divergence, while P. obliquiloculata with an ACD of ~160 m is more suitable for thermocline reconstructions. ACDs of G. hexagonus reveal a deep calcification depth of ~450 m in oxygen-depleted, but nutrient-rich water masses, consistent to other studies. As the d13C of G. hexagonus is in near-equilibrium with ambient seawater, we suggest this species is suitable for tracing nutrient conditions in equatorial water masses originating in extra-topical regions.
Resumo:
The book is devoted to geology of the Philippine Sea floor. This region is studied most extensively among other marginal seas of the Pacific Ocean. Rocks of the sedimentary and basalt layers within this sea have been studied during five legs of D/S Glomar Challenger. International geological expedition on board R/V Dmitry Mendeleev carried out according to the Project ''Ophiolites of Continents and Comparable Rocks of the Ocean Floor''obtained unique collection of rocks from the second and third layers of the ocean crust in the Philippine Sea. The book provides detailed petrographic and geochemical description of igneous and sedimentary formations from the Philippine Sea and compares them with rocks of the continental ophiolite association. An analysis of structure and history of the ocean crust formation in the region is based on all known geological information. The main periods of tectonic movement activation and nature of their manifestations within the sea are shown.
Resumo:
We present 30 new planktonic foraminiferal census data of surface sediment samples from the South China Sea, recovered between 630 and 2883 m water depth. These new data, together with the 131 earlier published data sets from the western Pacific, are used for calibrating the SIMMAX-28 transfer function to estimate past sea-surface temperatures. This regional SIMMAX method offers a slightly better understanding of the marginal sea conditions of the South China Sea than the linear transfer function FP-12E, which is based only on open-ocean data. However, both methods are biased toward the tropical temperature regime because of the very limited data from temperate to subpolar regions. The SIMMAX formula was applied to sediment core 17940 from the northeastern South China Sea, with sedimentation rates of 20-80 cm/ka. Results revealed nearly unchanged summer temperatures around 28°C for the last 30 ky, while winter temperatures varied between 19.5°C in the last glacial maximum and 26°C during the Holocene. During Termination 1A, the winter estimates show a Younger Dryas cooling by 3°C subsequent to a temperature optimum of 24°C during the Bölling=Alleröd. Estimates of winter temperature differences between 0 and 100 m water depth document the seasonal variations in the thickness of the mixed layer and provide a new proxy for estimating past changes in the strength of the winter monsoon.
Resumo:
We present an almost 3 year long time series of shell fluxes and oxygen isotopes of left-coiling Neogloboquadrina pachyderma and Turborotalita quinqueloba from sediment traps moored in the deep central Irminger Sea. We determined their response to the seasonal change from a deeply mixed water column with occasional deep convection in winter to a thermally stratified water column with a surface mixed layer (SML) of around 50 m in summer. Both species display very low fluxes during winter with a remnant summer population holding out until replaced by a vital population that seeds the subsequent blooms. This annual population overturning is marked by a 0.7 per mill increase in d18O in both species. The shell flux of N. pachyderma peaks during the spring bloom and in late summer, when stratification is close to its minimum and maximum, respectively. Both export periods contribute about equally and account for >95% of the total annual flux. Shell fluxes of T. quinqueloba show only a single broad pulse in summer, thus following the seasonal stratification cycle. The d18O of N. pachyderma reflects temperatures just below the base of the seasonal SML without offset from isotopic equilibrium. The d18O pattern of T. quinqueloba shows a nearly identical amplitude and correlates highly with the d18O of N. pachyderma. Therefore T. quinqueloba also reflects temperature near the base of the SML but with a positive offset from isotopic equilibrium. These offsets contrast with observations elsewhere and suggest a variable offset from equilibrium calcification for both species. In the Irminger Sea the species consistently show a contrast in their flux timings. Their flux-weighted delta d18O will thus dominantly be determined by seasonal temperature differences at the base of the SML rather than by differences in their depth habitat. Consequently, their sedimentary delta d18O may be used to infer the seasonal contrast in temperature at the base of the SML.
Resumo:
he separate roles of oceanic heat advection and orbital forcing on influencing early Holocene temperature variability in the eastern Nordic Seas is investigated. The effect of changing orbital forcing on the ocean temperatures is tested using the 1DICE model, and the 1DICE results are compared with new and previously published temperature reconstructions from a transect of five cores located underneath the pathway of Atlantic water, from the Faroe-Shetland Channel in the south to the Barents Sea in the north. The stronger early Holocene summer insolation at high northern latitudes increased the summer mixed layer temperatures, however, ocean temperatures underneath the summer mixed layer did not increase significantly. The absolute maximum in summer mixed layer temperatures occurred between 9 and 6 ka BP, representing the Holocene Thermal Maximum in the eastern Nordic Seas. In contrast, maximum in northward oceanic heat transport through the Norwegian Atlantic Current occurred approximately 10 ka BP. The maximum in oceanic heat transport at 10 ka BP occurred due to a major reorganization of the Atlantic Ocean circulation, entailing strong and deep rejuvenation of the Atlantic Meridional Overturning Circulation, combined with changes in the North Atlantic gyre dynamic causing enhanced transport of heat and salt into the Nordic Seas.
Resumo:
Hypotheses of origin of ocean deep red clays are under discussion. On an example of the Pacific Ocean grain size, mineralogy and chemical composition of clays are considered. It is shown that they formed from atmospheric dust and andesite pyroclastics. Accumulation of the clays occurred through deposition particle-by-particle and by pellet transport.
Resumo:
The present data set is a registry of samples from the Tara Oceans Expedition (2009-2013) that were selected for publication in a special issue of the SCIENCE journal (see related references below). The registry provides details about the sampling location and methodology of each sample. Uniform resource locators (URLs) offer direct links to additional contextual environmental data and to the corresponding sequence runs used for analysis in the related literature publications in the SCIENCE journal.
Resumo:
The present data set provides contextual data for samples from the Tara Oceans Expedition (2009-2013) that were selected for publication in a special issue of the SCIENCE journal (see related references below). Contextual data include various diversity indexes calculated for the sampling location using satellite and model climatologies (Darwin project, Physat) and results from the sequencing of Tara Oceans samples.
Resumo:
A continuous time series of annual soil thaw records, extending from 1994 to 2009, is available for comparison with the records of thaw obtained from the Biocomplexity Experiment (BE) for the period 2006-2009. Discontinuous records of thaw at Barrow from wet tundra sites date back to the 1960s. Comparisons between the longer records with the BE observations reveal strong similarities. Records of permafrost temperature, reflecting changes in the annual surface energy exchange, are available from the 1950s for comparison with results from measurement programs begun in 2002. The long-term systematic geocryological investigations at Barrow indicate an increase in permafrost temperature, especially during the last several years. The increase in near-surface permafrost temperature is most pronounced in winter. Marked trends are not apparent in the active-layer record, although subsidence measurements on the North Slope indicate that penetration into the ice-rich layer at the top of permafrost has occurred over the past decade. Active-layer thickness values from the 1960s are generally higher than those from the 1990s, and are very similar to those of the 2000s. Analysis of spatial active-layer observations at representative locations demonstrates significant variations in active-layer thickness between different landscape types, reflecting the influence of vegetation, substrate, microtopography, and, especially, soil moisture. Landscape-specific differences exist in the response of active-layer thickness to climatic forcing. These differences are attributable to the existence of localized controls related to combinations of surface and subsurface characteristics. The geocryological records at Barrow illustrate the importance and effectiveness of sustained, well organized monitoring efforts to document long-term trends.
Resumo:
A combination of stable isotope records and Mg/Ca temperature estimates of four different planktonic foraminiferal species from Ocean Drilling Program Site 1241 allows differentiation between temperature and salinity changes in the tropical east Pacific (TEP) upper water column during the Pliocene (~5.7-2.1 Ma). The deviation of d18O records and Mg/Ca temperature estimates from thermocline-dwelling planktonic foraminifers suggests that local changes in salinity exerted a much stronger control on Pliocene TEP upper ocean water mass signatures than previously assumed. The most pronounced Pliocene change in TEP upper ocean stratification was the shoaling of the thermocline from ~4.8 to 4.0 Ma that was possibly triggered by changes in the configuration of low-latitude ocean gateways. During this time interval, mixed-layer temperatures and salinities remained relatively constant in contrast to a pronounced temperature (~6°C) and salinity decrease at the bottom of the photic zone. This change led to a new state in the thermal structure of the TEP, as the thermocline remained relatively shallow until ~2.1 Ma.