903 resultados para mitochondrial DNA copy number
Resumo:
Evolutionary associations among the four North American species of menhadens (Brevoortia spp.) have not been thoroughly investigated. In the present study, classifications separating the four species into small-scaled and large-scaled groups were evaluated by using DNA data, and genetic associations within these groups were explored. Specifically, data from the nuclear genome (microsatellites) and the mitochondrial genome (mtDNA sequences) were used to elicit patterns of recent and historical evolutionary associations. Nuclear DNA data indicated limited contemporary gene flow among the species, and also indicated higher relatedness within the small-scaled and large-scaled menhadens than between these groups. Mitochondrial DNA sequences of the large-scaled menhadens indicated the presence of two ancestral lineages, one of which contained members of both species. This result may indicate genetic diver-gence (reproductive isolation) followed by secondary contact (hybridization) between these species. In contrast, a single ancestral lineage indicated incomplete genetic divergence between the small-scaled menhaden. These results are discussed in the context of the biology and demographics of each species.
Resumo:
The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP). However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA) sequencing (621 bp) and microsatellite genotyping (23 polymorphic markers) to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a) spatial and non-spatial Bayesian individual-based clustering (IBC) approaches (STRUCTURE, TESS, BAPS and GENELAND), and b) multivariate methods [discriminant analysis of principal components (DAPC) and spatial principal component analysis (sPCA)]. Additionally, because isolation by distance (IBD) is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence of the rivers Ebro, Tagus and Guadiana, suggesting that main watercourses in the Iberian Peninsula may act as semi-permeable barriers to gene flow in stone martens. To our knowledge, this is the first phylogeographic and population genetic study of the species at a broad regional scale. We also wanted to make the case for the importance and benefits of using and comparing multiple different clustering and multivariate methods in spatial genetic analyses of mobile and continuously distributed species.
Resumo:
Background: The European mink (Mustela lutreola, L. 1761) is a critically endangered mustelid, which inhabits several main river drainages in Europe. Here, we assess the genetic variation of existing populations of this species, including new sampling sites and additional molecular markers (newly developed microsatellite loci specific to European mink) as compared to previous studies. Probabilistic analyses were used to examine genetic structure within and between existing populations, and to infer phylogeographic processes and past demography. Results: According to both mitochondrial and nuclear microsatellite markers, Northeastern (Russia, Estonia and Belarus) and Southeastern (Romania) European populations showed the highest intraspecific diversity. In contrast, Western European (France and Spain) populations were the least polymorphic, featuring a unique mitochondrial DNA haplotype. The high differentiation values detected between Eastern and Western European populations could be the result of genetic drift in the latter due to population isolation and reduction. Genetic differences among populations were further supported by Bayesian clustering and two main groups were confirmed (Eastern vs. Western Europe) along with two contained subgroups at a more local scale (Northeastern vs. Southeastern Europe; France vs. Spain). Conclusions: Genetic data and performed analyses support a historical scenario of stable European mink populations, not affected by Quaternary climate oscillations in the Late Pleistocene, and posterior expansion events following river connections in both North-and Southeastern European populations. This suggests an eastern refuge during glacial maxima (as already proposed for boreal and continental species). In contrast, Western Europe was colonised more recently following either natural expansions or putative human introductions. Low levels of genetic diversity observed within each studied population suggest recent bottleneck events and stress the urgent need for conservation measures to counteract the demographic decline experienced by the European mink.
Resumo:
In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short-and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing.
Resumo:
Biochemical (electrophoresis and mitochondrial DNA) and morphological analysis are important tools for the characterization of strains. Reference is made to studies conducted in the framework of the Genetic Improvement of Farmed Tilapias project to establish a new base tilapia population for culture purposes, describing the basic concepts of electrophoresis and morphometric analysis.
Resumo:
Genetic variation of Contracaecum ogmorhini (sensu lato) populations from different otariid seals of the northern and southern hemisphere was studied on the basis of 18 enzyme loci as well as preliminary sequence analysis of the mitochondrial cyt b gene (260 bp). Samples were collected from Zalophus californianus in the boreal region and from Arctocephalus pusillus pusillus, A. pusillus doriferus and A. australis from the austral region. Marked genetic heterogeneity was found between C. ogmorhini (sensu lato) samples from the boreal and austral region, respectively. Two loci (Mdh-2 and NADHdh) showed fixed differences and a further three loci (Iddh, Mdh-1 and 6Pgdh) were highly differentiated between boreal and austral samples. Their average genetic distance was DNei = 0.36 at isozyme level. At mitochondrial DNA level, an average proportion of nucleotide substitution of 3.7% was observed. These findings support the existence of two distinct sibling species, for which the names C. ogmorhini (sensu stricto) and C. margolisi n. sp., respectively, for the austral and boreal taxon, are proposed. A description for C. margolisi n. sp. is provided. No diagnostic morphological characters have so far been detected; on the other hand, two enzyme loci, Mdh-2 and NADHdh, fully diagnostic between the two species, can be used for the routine identification of males, females and larval stages. Mirounga leonina was found to host C. ogmorhini (s.s.) inmixed infections with C. osculatum (s.l.) (of which C. ogmorhini (s.l.) was in the past considered to be a synonym) and C. miroungae; no hybrid genotypes were found,confirming the reproductive isolation of these three anisakid species. The hosts and geographical range so far recorded for C. margolisi n. sp. and C. ogmorhini (s.s.) are given.
Resumo:
O gênero Steno pertence à Ordem Cetartiodactyla, Família Delphinidae, e compreende apenas uma espécie: o golfinho-de-dentes-rugosos, Steno bredanensis. O golfinho-de-dentes-rugosos é encontrado nos Oceanos Atlântico, Pacífico e Índico, em águas profundas tropicais, subtropicais e temperadas quentes. Entretanto, em algumas localidades como as regiões Sudeste e Sul do Brasil, esta espécie é conhecida por apresentar hábitos costeiros, o que a torna suscetível a ameaças antropogênicas como a degradação do hábitat, as capturas acidentais e diversos tipos de poluição. Conhecer a magnitude destes impactos e o grau de diferenciação genética das populações usando marcadores moleculares são aspectos importantes para a conservação da espécie. Os marcadores moleculares são segmentos específicos de DNA que podem ou não fazer parte de um gene e que apresentam grau de polimorfismo adequado para responder questões sobre as relações genéticas de indivíduos, populações ou diferentes espécies. O DNA mitocondrial é um dos marcadores moleculares mais utilizados em estudos sobre estrutura populacional, sistemática e filogenia de cetáceos. Estudos genéticos têm mostrado que várias espécies de delfinídeos apresentam estrutura populacional genética, entre e dentro das bacias oceânicas. No presente estudo foi investigada a diferenciação genética do golfinho-de-dentes-rugosos usando sequências da região controle mitocondrial de várias localidades em todo o mundo (Oceano Pacífico Centro-Sul: N=59; Pacífico Tropical Leste: N= 4; Pacífico Noroeste: N=1; Oceano Índico: N=1; Atlântico - Caribe: N=3; Atlântico Sudoeste: N=44; N total = 112). Análises preliminares indicaram grande diferenciação genética entre os Oceanos Atlântico e Pacífico/Índico (distância p = 0,031), que foram posteriormente investigadas utilizando sequências do citocromo b e mitogenomas completos. As análises filogenéticas de Neighbor-Joining e Bayesianas não foram conclusivas sobre a existência de especiação críptica em Steno. No entanto, a grande diferenciação entre as bacias oceânicas merece uma análise mais aprofundada, utilizando outros marcadores genéticos (por ex., sequências nucleares) bem como dados morfológicos. Não obstante, as análises AMOVA e FST par-a-par revelaram forte diferenciação populacional, não só entre os oceanos Atlântico e Pacífico, mas também no Atlântico, onde foram detectadas três populações: Caribe, região Sudeste e região Sul do Brasil. As populações detectadas no Atlântico Sudoeste devem ser aceitas como Unidades de Manejo (Management Units, MU) e dados demográficos básicos precisam ser levantados para essas MU, a fim de possibilitar uma melhor avaliação dos impactos antrópicos sobre elas. Este estudo fornece a primeira perspectiva sobre a diferenciação genética mundial de S. bredanensis.
Resumo:
A região da Bacia de Campos está exposta a diversas atividades antrópicas, que interferem diretamente no funcionamento do ecossistêmico marinho. O estudo da fauna marinha na costa centro-norte fluminense mostra grande relevância, diversas aves marinhas residem ou passam grande parte de seu período migratório ao longo da Bacia de Campos, entre elas está Sula leucogaster (Boddaert, 1783). Embora essas aves sejam altamente móveis, suas populações apresentam uma estrutura populacional genética robusta. Com o intuito de verificar a estruturação e as relações evolutivas da população de Sula leucogaster na Bacia de Campos foram recolhidas 91 amostras de encalhe e os dados gerados para esta região foram comparados com dados já publicados de outras bacias oceânicas. A partir da região controle do DNA mitocondrial foram gerados 26 haplótipos, todos exclusivos da Bacia de Campos, muitos raros e apenas oito possuíram frequência comum. As análises mostraram que a população da Bacia de Campos é um estoque genético de Sula leucogaster. Tal fato pode ser atribuído ao comportamento filopátrico e ao hábito costeiro dessa espécie que impede o fluxo gênico entre populações. Além disso, a população da Bacia de Campos detém baixa variabilidade genética e possivelmente está sofrendo efeito gargalo ou seleção purificadora, corroborados por valores do teste Fu, o que é comum para espécies que se dividem em subpopulações. Os dados filogenéticos demonstram um contato recente entre as populações da Bacia de Campos e da ilha de Ascensão. As condições oceanográficas também têm influência na estruturação de populações de Sula leucogaster, visto que a ausência de barreiras e a proximidade geográfica poderiam favorecer contato secundário com o Mar do Caribe, fato não evidenciado nas análises. Sendo assim, a divergência de populações nessa espécie e a baixa variabilidade genética são fatores preocupantes para a manutenção da população de atobás marrons em uma área de grande impacto ambiental
Resumo:
Loggerhead sea turtles (Caretta caretta) are migratory, long-lived, and slow maturing. They are difficult to study because they are seen rarely and their habitats range over vast stretches of the ocean. Movements of immature turtles between pelagic and coastal developmental habitats are particularly difficult to investigate because of inadequate tagging technologies and the difficulty in capturing significant numbers of turtles at sea. However, genetic markers found in mitochondrial DNA (mtDNA) provide a basis for predicting the origin of juvenile turtles in developmental habitats. Mixed stock analysis was used to determine which nesting populations were contributing individuals to a foraging aggregation of immature loggerhead turtles (mean 63.3 cm straight carapace length [SCL]) captured in coastal waters off Hutchinson Island, Florida. The results indicated that at least three different western Atlantic loggerhead sea turtle subpopulations contribute to this group: south Florida (69%), Mexico (20%), and northeast Florida-North Carolina (10%). The conservation and management of these immature sea turtles is complicated by their multinational genetic demographics.
Resumo:
Intergeneric hybridization between the epinepheline serranids Cephalopholis fulva and Paranthias furcifer in waters off Bermuda was investigated by using morphological and molecular characters. Putative hybrids, as well as members of each presumed parent species, were analyzed for 44 morphological characters and screened for genetic variation at 16 nuclear allozyme loci, two nuclear (n)DNA loci, and three mitochondrial (mt)DNA gene regions. Four of 16 allozyme loci, creatine kinase (CK-B*), fumarase (FH*), isocitrate dehydrogenase (ICDH-S*), and lactate dehydrogenase (LDH-B*), were unique in C. fulva and P. furcifer. Restriction fragments of two nuclear DNA intron regions, an actin gene intron and the second intron in the S7 ribosomal protein gene, also exhibited consistent differences between the two presumed parent species. Restriction fragments of three mtDNA regions—ND4, ATPase 6, and 12S/16S ribosomal RNA—were analyzed to identify maternal parentage of putative hybrids. Both morphological data and nuclear genetic data were found to be consistent with the hypothesis that the putative hybrids were the result of interbreeding between C. fulva and P. furcifer. Mean values of 38 morphological characters were different between presumed parent species, and putative hybrids were intermediate to presumed parent species for 33 of these characters. A principal component analysis of the morphological and meristic data was also consistent with hybridization between C. fulva and P. furcifer. Thirteen of 15 putative hybrids were heterozygous at all diagnostic nuclear loci, consistent with F1 hybrids. Two putative hybrids were identified as post-F1 hybrids based on homozygosity at one nuclear locus each. Mitochondrial DNA analysis showed that the maternal parent of all putative hybrid individuals was C. fulva. A survey of nuclear and mitochondrial loci of 57 C. fulva and 37 P. furcifer from Bermuda revealed no evidence of introgression between the parent species mediated by hybridization.
Resumo:
对云南僰人32份男性DNA样本进行Y染色体单倍型以及mitochondrial DNA (mtDNA)单倍型分析,结果发现云南僰人的父系和母系遗传组分都表现出典型的南方人群的遗传特征.由僰人的数据结合已经发表的东亚人群的Y染色体和mtDNA单倍型(haplotype)数据进行Multidimensional Scaling(MDS)分析,结果表明,在MDS分布图中僰人群体的Y染色体单倍型和mtDNA单倍型都与南方人群聚在一起.这一结果支持僰人的遗传族源为东亚南方人群后裔,与考古学的推论相一致.结合历史和考古学证据来探讨僰人的起源和史前迁移,为揭开"僰人悬棺"这种独特的考古文化的起源和史前传播提供遗传学的研究证据.
Resumo:
Mitochondrial DNA control region segment I sequences and melanocortin 1 receptor (MC1R) gene polymorphism were examined in ethnic populations in the silk road region of China. Both the frequencies of the MC1R variants and the results of mtDNA data in this region presented intermediate values between those of Europe and East and Southeast Asia, which suggested extensive gene admixture in this area and was in general agreement with previous studies. Phylogenetic analysis of the ethnic populations in the Silk Road region that based on mtDNA data didn't show expected cluster pattern according to their ethnogenesis. We suspect that a high migration rate in female among these closely related populations and other three demographic events might account for it.
Resumo:
Carnivora; Caniformia; Feliformia; Phylogenetic tree; Mitochondrial DNA; Nuclear genes; 【摘要】 追溯生物界不同生物类型的起源及进化关系,即重建生物类群的系统发育树是进化生物学领域中一个十分重要的内容。食肉目哺乳动物位于食物链顶端,很多成员不仅在我国野生动物保护工作中占有重要地位,而且还是研究动物适应性进化遗传机制的重要模式生物。因而,食肉目物种作为物种资源中的一个重要类群,其系统发育学一直是国内外研究的热门课题。构建可靠的食肉目分子系统树,无疑将具有重要的进化理论意义和保护生物学价值。鉴于目前食肉目各科间系统发育关系仍然处于“广泛争论”的状态,本文将针对食肉目科水平上的系统发育学研究进展,包括来自于形态学特征、细胞学及分子生物学方面的证据,做简要概述,并提出目前研究中存在的问题。这对今后食肉目系统发育方面的进一步研究工作具有指导意义,并为以该类群作为模式生物开展适应性进化研究奠定基础
Resumo:
首次报道日本花鲈线粒体DNA细胞色素b基因片段的PCR扩增及其序列测 定。得到410bp的碱基序列,其A、T、G、C含量分别为99bp(24.15哟、113bp(27.56旧、 72bp(17.56嗡、126bp(30.73哟,与其他鱼类相同基因片段碱基序列含量相似。
Resumo:
A survey of restriction fragment polymorphism in mitochondrial DNA of three subspecies of Carassius auratus throughout four provinces in China was undertaken using 17 restriction enzymes. Two carp, Cyprinus carpio rubbrofuscus and Cyprinus carpio carpio, were included as the outgroup. A total of 16 haplotypes was observed: 5 in tetraploids of C. auratus auratus; 8 in hexaploids of C. auratus auratus; and 2 in C. auratus gibelio and C. auratus cuvieri, respectively. The tetraploids and hexaploids share three common haplotypes as I, V, and VI. C. a. Cuvieri may have diverged first among the three subspecies. Interestingly, C. a. auratus and C. a. cuvieri did not form monophyletic clades, which indicated that the classification of carassius auratus required further studies. The current hypothesis, that hexaploids originated from tetraploids by a polyploidy event, is less favorable, based on the distribution of haplotypes and the lower diversity in tetraploids than in hexaploids. Our data also indicate that divergence of hexaploids and tetraploids might be recent and mtDNA polymorphism existed before the divergence. Meanwhile, genetic isolation exists between the hexaploids and the tetraploids.