973 resultados para microtensile bond strength test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this in vitro study was to compare the bond strength between fiber post and laser-treated root canals. Forty single-rooted bovine teeth were endodontically treated and randomly divided into four groups of equal size according to the root canal treatment: group 1 conventional treatment (without laser irradiation); group 2 Nd:YAG laser (1.5 W, 10 Hz, 100 mJ); group 3 Er,Cr:YSGG laser (0.75 W, 20 Hz); and group 4 Nd:YAG + Er,Cr:YSGG lasers. The fiber posts were cemented with an adhesive system + resin cement, in accordance with the manufacturer`s instructions. A mini acrylic pipe was fixed on the coronal section of the post using a light-polymerized resin. Specimens were mounted on an acrylic pipe with a self-polymerized resin. Retention forces were determined using a universal testing machine (0.5 mm/min). Data were analyzed using one-way ANOVA and Tukey tests (p < 0.05). The post retention force in group 2 was found to be lower than that in the other experimental groups. Fractures were observed at the interface between the dentin and the resin in all groups. High-intensity lasers can be used in conventional endodontic treatment; however, root canal surface irradiation using the Nd:YAG laser was shown to negatively affect the post retention force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n = 4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm(2)) or 200 mJ/pulse (64.5 J/cm(2)), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM-LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. ""Stretch mark""-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnel-shaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study. Lasers Surg. Med. 42:662-670, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the cariostatic effects of CO(2) laser on enamel have been shown, its effects on root surface demineralization remains uncertain. The objectives of this in vitro research was to establish safe parameters for a pulsed 10.6 mu m CO(2) laser and to evaluate its effect on morphological features of the root surface, as well as on the reduction of root demineralization. Ninety-five human root surfaces were randomly divided into five groups: G1-No treatment (control); G2-2.5 J/cm(2); G3-4.0 J/cm(2); G4-5.0 J/cm(2); and G5-6.0 J/cm(2). Intrapulpal temperature was evaluated during root surface irradiation by a thermocouple and morphological changes were evaluated by SEM. After the surface treatment, the specimens were submitted to a 7-day pH-cycling model. Subsequently, the cross-sectional Knoop microhardness values were measured. For all irradiated groups, intrapulpal temperature changes were less than 1.5 degrees C. Scanning electron microscopy images indicated that fluences as low as 4.0 J/cm(2) were sufficient to induce morphological changes in the root surface. Additionally, for fluences reaching or exceeding 4.0 J/cm(2), laser-induced inhibitory effects on root surface demineralization were observed. It was concluded that laser energy density in the range of 4.0 to 6.0 J/cm(2) could be applied to a dental root to reduce demineralization of this surface without compromising pulp vitality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The objective of this in vitro study was to compare the degree of microleakage of composite restorations performed by lasers and conventional drills associated with two adhesive systems. Materials and Methods: Sixty bovine teeth were divided into 6 groups (n = 10). The preparations were performed in groups 1 and 2 with a high-speed drill (HID), in groups 3 and 5 with Er:YAG laser, and in groups 4 and 6 with Er,Cr:YSGG laser. The specimens were restored with resin composite associated with an etch-and-rinse two-step adhesive system (Single Bond 2 [SB]) (groups 1, 3, 4) and a self-etching adhesive (One-Up Bond F [OB]) (groups 2, 5, 6). After storage, the specimens were polished, thermocycled, immersed in 50% silver nitrate tracer solution, and then sectioned longitudinally. The specimens were placed under a stereomicroscope (25X) and digital images were obtained. These were evaluated by three blinded evaluators who assigned a microleakage score (0 to 3). The original data were submitted to Kruskal-Wallis and Mann-Whitney statistical tests. Results: The occlusal/enamel margins demonstrated no differences in microleakage for all treatments (p > 0.05). The gingival/dentin margins presented similar microleakage in cavities prepared with Er:YAG, Er,Cr:YSGG, and HD using the etch-and-rinse two-step adhesive system (SB) (p > 0.05); otherwise, both Er:YAG and Er,Cr:YSGG lasers demonstrated lower microleakage scores with OB than SB adhesive (p < 0.05). Conclusion: The microleakage score at gingival margins is dependent on the interaction of the hard tissue removal tool and the adhesive system used. The self-etching adhesive system had a lower microleakage score at dentin margins for cavities prepared with Er:YAG and Er,Cr:YSGG than the etch-and-rinse two-step adhesive system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-term effectiveness of chlorhexidine as a matrix metalloproteinase (MMP) inhibitor may be compromised when water is incompletely removed during dentin bonding. This study challenged this anti-bond degradation strategy by testing the null hypothesis that wet-bonding with water or ethanol has no effect on the effectiveness of chlorhexidine in preventing hybrid layer degradation over an 18-month period. Acid-etched dentin was bonded under pulpal pressure simulation with Scotchbond MP and Single Bond 2, with water wet-bonding or with a hydrophobic adhesive with ethanol wet-bonding, with or without pre-treatment with chlorhexidine diacetate (CHD). Resin-dentin beams were prepared for bond strength and TEM evaluation after 24 hrs and after aging in artificial saliva for 9 and 18 mos. Bonds made to ethanol-saturated dentin did not change over time with preservation of hybrid layer integrity. Bonds made to CHD pre-treated acid-etched dentin with commercial adhesives with water wet-bonding were preserved after 9 mos but not after 18 mos, with severe hybrid layer degradation. The results led to rejection of the null hypothesis and highlight the concept of biomimetic water replacement from the collagen intrafibrillar compartments as the ultimate goal in extending the longevity of resin-dentin bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives To characterize the properties of dentin matrix treated with two proanthocyanidin rich cross-linking agents and their effect on dentin bonded interfaces. Methods Sound human molars were cut into 0.5mm thick dentin slabs, demineralized and either treated with one of two cross-linking agents (grape seedGSE and cocoa seedCOE extracts) or left untreated. The modulus of elasticity of demineralized dentin was assessed after 10 or 60min and the swelling ratio after 60min treatment. Bacterial collagenase was also used to assess resistance to enzymatic degradation of samples subjected to ultimate tensile strength. The effect of GSE or COE on the resindentin bond strength was evaluated after 10 or 60min of exposure time. Data were statistically analyzed at a 95% confidence interval. Results Both cross-linkers increased the elastic modulus of demineralized dentin as exposure time increased. Swelling ratio was lower for treated samples when compared to control groups. No statistically significant changes to the UTS indicate that collagenase had no effect on dentin matrix treated with either GSE or COE. Resindentin bonds significantly increased following treatment with GSE regardless of the application time or adhesive system used. Significance Increased mechanical properties and stability of dentin matrix can be achieved by the use of PA-rich collagen cross-linkers most likely due to the formation of a PAcollagen complex. The short term resindentin bonds can be improved after 10min dentin treatment.(C) 2010 Academy of Denta lMaterials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To evaluate the efficacy of simplified dehydration protocols, in the absence of tubular occlusion, on bond strength and interfacial nanoleakage of a hydrophobic experimental adhesive blend to acid-etched, ethanol-dehydrated dentine immediately and after 6 months. Methods: Molars were randomly assigned to 6 treatment groups (n = 5). Under pulpal pressure simulation, dentine crowns were acid-etched with 35% H(3)PO(4) and rinsed with water. Adper Scotchbond Multi-Purpose was used for the control group. The remaining groups had their dentine surface dehydrated with ethanol solutions: group 1 = 50%, 70%, 80%, 95% and 3 x 100%, 30 s for each application; group 2 the same ethanol sequence with 15 s for each solution; groups 3, 4 and 5 used 100% ethanol only, applied in seven, three or one 30 s step, respectively. After dehydration, a primer (50% BisGMA + TEGDMA, 50% ethanol) was used, followed by the neat comonomer adhesive application. Resin composite build-ups were then prepared using an incremental technique. Specimens were stored for 24 h, sectioned into beams and stressed to failure after 24 h or after 6 months of artificial ageing. Interfacial silver leakage evaluation was performed for both storage periods (n = 5 per subgroup). Results: Group 1 showed higher bond strengths at 24 h or after 6 months of ageing (45.6 +/- 5.9(a)/43.1 +/- 3.2(a) MPa) and lower silver impregnation. Bond strength results were statistically similar to control group (41.2 +/- 3.3(ab)/38.3 +/- 4.0(ab) MPa), group 2 (40.0 +/- 3.1(ab)/38.6 +/- 3.2(ab) MPa), and group 3 at 24 h (35.5 +/- 4.3(ab) MPa). Groups 4 (34.6 +/- 5.7(bc)/25.9 +/- 4.1(c) MPa) and 5 (24.7 +/- 4.9(c)/18.2 +/- 4.2(c) MPa) resulted in lower bond strengths, extensive interfacial nanoleakage and more prominent reductions (up to 25%) in bond strengths after 6 months of ageing. Conclusions: Simplified dehydration protocols using one or three 100% ethanol applications should be avoided for the ethanol-wet bonding technique in the absence of tubular occlusion, as they showed decreased bond strength, more severe nanoleakage and reduced bond stability over time. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate the effect of EDTA pre-treatment of dentine on resistance to degradation of the bond between dentine and resin-modified glass-ionomer cements. Methods: Sixty non-carious human molars underwent cavity preparations. Teeth were restored with Fuji II LC or Vitremer. Half of the cavities were restored following manufacturers` instructions whereas the other half was pre-treated with EDTA (0.1 M, pH 7.4) for 60 s. Teeth were stored in water at 37 degrees C for 24 h, 3 months or submitted to 10% NaOCl immersion for 5 h. Teeth were sectioned into beams (1 +/- 0.1 mm) and tested to failure in tension at 0.5 mm/min. Bond strength data (MPa) were analyzed by ANOVA and SNK multiple-comparisons tests (p < 0.05). Results: When EDTA was used for pre-treatment of dentine, higher bond strengths were observed for both cements. Degradation challenges produced a decrease in bond strength values only in the Vitremer group. This decrease was avoided when EDTA was used for dentine treatment before restoring with Vitremer. Conclusions: EDTA pre-treatment of dentine increases bond strength of resin modified glass-ionomers cements to dentine and improves resistance to degradation of the bond between Vitremer and dentine. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study evaluated the ability of benzalkonium chloride (BAC) to bind to dentine and to inhibit soluble recombinant MMPs and bound dentine matrix metalloproteinases (MMPs). Methods: Dentine powder was prepared from extracted human molars. Half was left mineralized; the other half was completely demineralized. The binding of BAG to dentine powder was followed by measuring changes in the supernatant concentration using UV spectrometry. The inhibitory effects of BAC on rhMMP-2, -8 and -9 were followed using a commercially available in vitro proteolytic assay. Matrix-bound endogenous MMP-activity was evaluated in completely demineralized beams. Each beam was either dipped into BAG and then dropped into 1 mL of a complete medium (CM) or they were placed in 1 mL of CM containing BAG for 30 days. After 30 days, changes in the dry mass of the beams or in the hydroxyproline (HYP) content of hydrolysates of the media were quantitated as indirect measures of matrix collagen hydrolysis by MMPs. Results: Demineralized dentine powder took up 10-times more BAG than did mineralized powder. Water rinsing removed about 50% of the bound BAC, whilst rinsing with 0.5 M NaCl removed more than 90% of the bound BAG. BAG concentrations 0.5 wt% produced 100% inhibition of soluble recombinant MMP-2, -8 or -9, and inhibited matrix-bound MMPs between 55 and 66% when measured as mass loss or 76-81% when measured as solubilization of collagen peptide fragments. Conclusions: BAC is effective at inhibiting both soluble recombinant MMPs and matrix-bound dentine MMPs in the absence of resins. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. The objectives of this study were to evaluate the transdentinal cytotoxicity of 10% and 16% carbamide peroxide gel (CP), as well as the ability of the antioxidant, 10% sodium ascorbate (SA), to protect the odontoblasts in culture. Study design. Human dentin discs of 0.5-mm thickness were obtained and were placed into artificial pulp chambers. MDPC-23 odontoblastlike cells were seeded on pulp surface of the discs and the following groups were established: G1-No Treatment (control), G2-10% SA/6hs, G3-10%/CP6hs, G4-10%SA/6hs+10%CP/6hs, G5-16%CP/6hs, and G6-10%SA/6hs+16%CP/6hs. The cell viability was measured by the MTT assay. Results. In groups where 16% CP was used, decreased cell viability was observed. Conversely, the application of 10% SA on the dentin discs, before the use of the CP, reduced the cytotoxic effects of these products on cells. Conclusions. The 16% CP cause a significant decrease in MDPC-23 cell viability and 10% SA was able to partially prevent the toxic effects of CP. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e70-e76)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study examined the retention of solvents within experimental HEMA/solvent primers after two conditions for solvent evaporation: from a free surface or from dentine surface. Methods: Experimental primers were prepared by mixing 35% HEMA with 65% water, methanol, ethanol or acetone (v/v). Aliquots of each primer (50 mu l) were placed on glass wells or they were applied to the surface of acid-etched dentine cubes (2 mm x 2 mm x 2 mm) (n = 5). For both conditions (i.e. from free surface or dentine cubes), change in primers mass due to solvent evaporation was gravimetrically measured for 10 min at 51% RH and 21 degrees C. The rate of solvent evaporation was calculated as a function of loss of primers mass (%) over time. Data were analysed by two-way ANOVA and Student-Newman-Keuls (p < 0.05). Results: There were significant differences between solvent retention(%) and evaporation rate (%/min) depending on the solvent present in the primer and the condition for evaporation (from free surface or dentine cubes) (p < 0.05). For both conditions, the greatest amount of retained solvent was observed for HEMA/water primer. The rate of solvent evaporation for HEMA/acetone primer was almost 2- to 10-times higher than for HEMA/water primer depending whether evaporation occurred, respectively, from a free surface or dentine cubes. The rate of solvent evaporation varied with time, being in general highest at the earliest periods. Conclusions: The rate of solvent evaporation and its retention into HEMA/solvent primers was influenced by the type of the solvent and condition allowed for their evaporation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the microhardness of superficial and deep dentin irradiated with different erbium:yttrium-aluminum-garnet (Er:YAG) laser energies. Seventy-two molars were bisected and randomly assigned to two groups (superficial dentin or deep dentin) and into six subgroups (160 mJ, 200 mJ, 260 mJ, 300 mJ, 360 mJ, and control). After irradiation, the cavities were longitudinally bisected. Microhardness was measured at six points (20 A mu m, 40 A mu m, 60 A mu m, 80 A mu m, 100 A mu m, and 200 A mu m) under the cavity floor. Data were submitted to analysis of variance (ANOVA) and Fisher`s tests (alpha = 0.05). Superficial dentin presented higher microhardness than deep dentin; energy of 160 mJ resulted in the highest microhardness and 360 mJ the lowest one. Values at all points were different, exhibiting increasing microhardness throughout; superficial dentin microhardness was the highest at 20 A mu m with 160 mJ energy; for deep dentin, microhardness after irradiation at 160 mJ and 200 mJ was similar to that of the control. The lowest energy increased superficial dentin microhardness at the closest extent under the cavity; deep dentin microhardness was not altered by energies of 160 mJ and 200 mJ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. A pilot investigation of the influence of different force levels on a treatment technique's hypoalgesic effect. Design. Randomised single blind repeated measures. Background. Optimisation of such biomechanical treatment variables as the point of force application, direction of force application and the level of applied manual force is classically regarded as the basis of best practice manipulative therapy. Manipulative therapy is frequently used to alleviate pain, a treatment effect that is often studied directly in the neurophysiological, paradigm and seldom in biomechanical research. The relationship between the level of force applied by a technique (e.g. biomechanics) and its hypoalgesic effect was the focus of this study. Method. The experiment involved the application of a lateral glide mobilisation with movement treatment technique to the symptomatic elbow of six subjects with lateral epicondylalgia. Four different levels of force, which were measured with a flexible pressure-sensing mat, were randomly applied while the subject performed a pain free grip strength test. Results. Standardised manual force data varied from 0.76 to 4.54 N/cm, lower-upper limits 95 Cl, respectively. Pain free grip strength expressed as a percentage change from pre-treatment values was significantly greater with manual forces beyond 1.9 N/cm (P = 0.014). Conclusions. This study, albeit a pilot, provides preliminary evidence that in terms of the hypoalgesic effect of a mobilisation with movement treatment technique, there may be an optimal level of applied manual force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm(-2)) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 +/- 0.2 J cm(-2) and the ablation rate achieved in the range 1 to 2 mu m/pulse for an average fluence of 3 J cm(-2). The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the beta-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material.