911 resultados para method of lines
Resumo:
Abstract Objective: To evaluate a family practice intervention to encourage patients to request a skin examination during their consultation. Methods: Family physicians in Queensland, Australia, were randomized to intervention or control groups. In the intervention group, materials were provided by the office receptionist and supported by the family physician. Results: The rate of full-body skin examination was 99.3/ 1000 consultations in intervention-group practices compared to 22.4/ 1000 in control-group practices (p
Resumo:
The fluctuation in water demand in the Redland community of Miami-Dade County was examined using land use data from 2001 and 2011 and water estimation techniques provided by local and state agencies. The data was converted to 30 m mosaicked raster grids that indicated land use change, and associated water demand measured in gallons per day per acre. The results indicate that, first, despite an increase in population, water demand decreased overall in Redland from 2001 to 2011. Second, conversion of agricultural lands to residential lands actually caused a decrease in water demand in most cases while acquisition of farmland by public agencies also caused a sharp decline. Third, conversion of row crops and groves to nurseries was substantial and resulted in a significant increase in water demand in all such areas converted. Finally, estimating water demand based on land use, rather than population, is a more accurate approach.
Resumo:
We show that a set of fundamental solutions to the parabolic heat equation, with each element in the set corresponding to a point source located on a given surface with the number of source points being dense on this surface, constitute a linearly independent and dense set with respect to the standard inner product of square integrable functions, both on lateral- and time-boundaries. This result leads naturally to a method of numerically approximating solutions to the parabolic heat equation denoted a method of fundamental solutions (MFS). A discussion around convergence of such an approximation is included.
Resumo:
Congenital vertebral malformations are common in brachycephalic “screw-tailed” dog breeds such as French bulldogs, English bulldogs, Boston terriers, and Pugs. Those vertebral malformations disrupt the normal vertebral column anatomy and biomechanics, potentially leading to deformity of the vertebral column and subsequent neurological dysfunction. The initial aim of this work was to study and determine whether the congenital vertebral malformations identified in those breeds could be translated in a radiographic classification scheme used in humans to give an improved classification, with clear and well-defined terminology, with the expectation that this would facilitate future study and clinical management in the veterinary field. Therefore, two observers who were blinded to the neurologic status of the dogs classified each vertebral malformation based on the human classification scheme of McMaster and were able to translate them successfully into a new classification scheme for veterinary use. The following aim was to assess the nature and the impact of vertebral column deformity engendered by those congenital vertebral malformations in the target breeds. As no gold standard exists in veterinary medicine for the calculation of the degree of deformity, it was elected to adapt the human equivalent, termed the Cobb angle, as a potential standard reference tool for use in veterinary practice. For the validation of the Cobb angle measurement method, a computerised semi-automatic technique was used and assessed by multiple independent observers. They observed not only that Kyphosis was the most common vertebral column deformity but also that patients with such deformity were found to be more likely to suffer from neurological deficits, more especially if their Cobb angle was above 35 degrees.
Resumo:
In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
During the past three decades, the subject of fractional calculus (that is, calculus of integrals and derivatives of arbitrary order) has gained considerable popularity and importance, mainly due to its demonstrated applications in numerous diverse and widespread fields in science and engineering. For example, fractional calculus has been successfully applied to problems in system biology, physics, chemistry and biochemistry, hydrology, medicine, and finance. In many cases these new fractional-order models are more adequate than the previously used integer-order models, because fractional derivatives and integrals enable the description of the memory and hereditary properties inherent in various materials and processes that are governed by anomalous diffusion. Hence, there is a growing need to find the solution behaviour of these fractional differential equations. However, the analytic solutions of most fractional differential equations generally cannot be obtained. As a consequence, approximate and numerical techniques are playing an important role in identifying the solution behaviour of such fractional equations and exploring their applications. The main objective of this thesis is to develop new effective numerical methods and supporting analysis, based on the finite difference and finite element methods, for solving time, space and time-space fractional dynamical systems involving fractional derivatives in one and two spatial dimensions. A series of five published papers and one manuscript in preparation will be presented on the solution of the space fractional diffusion equation, space fractional advectiondispersion equation, time and space fractional diffusion equation, time and space fractional Fokker-Planck equation with a linear or non-linear source term, and fractional cable equation involving two time fractional derivatives, respectively. One important contribution of this thesis is the demonstration of how to choose different approximation techniques for different fractional derivatives. Special attention has been paid to the Riesz space fractional derivative, due to its important application in the field of groundwater flow, system biology and finance. We present three numerical methods to approximate the Riesz space fractional derivative, namely the L1/ L2-approximation method, the standard/shifted Gr¨unwald method, and the matrix transform method (MTM). The first two methods are based on the finite difference method, while the MTM allows discretisation in space using either the finite difference or finite element methods. Furthermore, we prove the equivalence of the Riesz fractional derivative and the fractional Laplacian operator under homogeneous Dirichlet boundary conditions – a result that had not previously been established. This result justifies the aforementioned use of the MTM to approximate the Riesz fractional derivative. After spatial discretisation, the time-space fractional partial differential equation is transformed into a system of fractional-in-time differential equations. We then investigate numerical methods to handle time fractional derivatives, be they Caputo type or Riemann-Liouville type. This leads to new methods utilising either finite difference strategies or the Laplace transform method for advancing the solution in time. The stability and convergence of our proposed numerical methods are also investigated. Numerical experiments are carried out in support of our theoretical analysis. We also emphasise that the numerical methods we develop are applicable for many other types of fractional partial differential equations.
Resumo:
An existing model for solvent penetration and drug release from a spherically-shaped polymeric drug delivery device is revisited. The model has two moving boundaries, one that describes the interface between the glassy and rubbery states of polymer, and another that defines the interface between the polymer ball and the pool of solvent. The model is extended so that the nonlinear diffusion coefficient of drug explicitly depends on the concentration of solvent, and the resulting equations are solved numerically using a front-fixing transformation together with a finite difference spatial discretisation and the method of lines. We present evidence that our scheme is much more accurate than a previous scheme. Asymptotic results in the small-time limit are presented, which show how the use of a kinetic law as a boundary condition on the innermost moving boundary dictates qualitative behaviour, the scalings being very different to the similar moving boundary problem that arises from modelling the melting of an ice ball. The implication is that the model considered here exhibits what is referred to as ``non-Fickian'' or Case II diffusion which, together with the initially constant rate of drug release, has certain appeal from a pharmaceutical perspective.
Resumo:
The method of lines is a standard method for advancing the solution of partial differential equations (PDEs) in time. In one sense, the method applies equally well to space-fractional PDEs as it does to integer-order PDEs. However, there is a significant challenge when solving space-fractional PDEs in this way, owing to the non-local nature of the fractional derivatives. Each equation in the resulting semi-discrete system involves contributions from every spatial node in the domain. This has important consequences for the efficiency of the numerical solver, especially when the system is large. First, the Jacobian matrix of the system is dense, and hence methods that avoid the need to form and factorise this matrix are preferred. Second, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. In this paper, we show how an effective preconditioner is essential for improving the efficiency of the method of lines for solving a quite general two-sided, nonlinear space-fractional diffusion equation. A key contribution is to show, how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.
Resumo:
The objective of this PhD research program is to investigate numerical methods for simulating variably-saturated flow and sea water intrusion in coastal aquifers in a high-performance computing environment. The work is divided into three overlapping tasks: to develop an accurate and stable finite volume discretisation and numerical solution strategy for the variably-saturated flow and salt transport equations; to implement the chosen approach in a high performance computing environment that may have multiple GPUs or CPU cores; and to verify and test the implementation. The geological description of aquifers is often complex, with porous materials possessing highly variable properties, that are best described using unstructured meshes. The finite volume method is a popular method for the solution of the conservation laws that describe sea water intrusion, and is well-suited to unstructured meshes. In this work we apply a control volume-finite element (CV-FE) method to an extension of a recently proposed formulation (Kees and Miller, 2002) for variably saturated groundwater flow. The CV-FE method evaluates fluxes at points where material properties and gradients in pressure and concentration are consistently defined, making it both suitable for heterogeneous media and mass conservative. Using the method of lines, the CV-FE discretisation gives a set of differential algebraic equations (DAEs) amenable to solution using higher-order implicit solvers. Heterogeneous computer systems that use a combination of computational hardware such as CPUs and GPUs, are attractive for scientific computing due to the potential advantages offered by GPUs for accelerating data-parallel operations. We present a C++ library that implements data-parallel methods on both CPU and GPUs. The finite volume discretisation is expressed in terms of these data-parallel operations, which gives an efficient implementation of the nonlinear residual function. This makes the implicit solution of the DAE system possible on the GPU, because the inexact Newton-Krylov method used by the implicit time stepping scheme can approximate the action of a matrix on a vector using residual evaluations. We also propose preconditioning strategies that are amenable to GPU implementation, so that all computationally-intensive aspects of the implicit time stepping scheme are implemented on the GPU. Results are presented that demonstrate the efficiency and accuracy of the proposed numeric methods and formulation. The formulation offers excellent conservation of mass, and higher-order temporal integration increases both numeric efficiency and accuracy of the solutions. Flux limiting produces accurate, oscillation-free solutions on coarse meshes, where much finer meshes are required to obtain solutions with equivalent accuracy using upstream weighting. The computational efficiency of the software is investigated using CPUs and GPUs on a high-performance workstation. The GPU version offers considerable speedup over the CPU version, with one GPU giving speedup factor of 3 over the eight-core CPU implementation.
Resumo:
Os principais constituintes do ar, nitrogênio, oxigênio e argônio, estão cada vez mais presentes nas indústrias, onde são empregados nos processos químicos, para o transporte de alimentos e processamento de resíduos. As duas principais tecnologias para a separação dos componentes do ar são a adsorção e a destilação criogênica. Entretanto, para ambos os processos é necessário que os contaminantes do ar, como o gás carbônico, o vapor dágua e hidrocarbonetos, sejam removidos para evitar problemas operacionais e de segurança. Desta forma, o presente trabalho trata do estudo do processo de pré-purificação de ar utilizando adsorção. Neste sistema a corrente de ar flui alternadamente entre dois leitos adsorvedores para produzir ar purificado continuamente. Mais especificamente, o foco da dissertação corresponde à investigação do comportamento de unidades de pré-purificação tipo PSA (pressure swing adsorption), onde a etapa de dessorção é realizada pela redução da pressão. A análise da unidade de pré-purificação parte da modelagem dos leitos de adsorção através de um sistema de equações diferenciais parciais de balanço de massa na corrente gasosa e no leito. Neste modelo, a relação de equilíbrio relativa à adsorção é descrita pela isoterma de Dubinin-Astakhov estendida para misturas multicomponentes. Para a simulação do modelo, as derivadas espaciais são discretizadas via diferenças finitas e o sistema de equações diferenciais ordinárias resultante é resolvido por um solver apropriado (método das linhas). Para a simulação da unidade em operação, este modelo é acoplado a um algoritmo de convergência relativo às quatro etapas do ciclo de operação: adsorção, despressurização, purga e dessorção. O algoritmo em questão deve garantir que as condições finais da última etapa são equivalentes às condições iniciais da primeira etapa (estado estacionário cíclico). Desta forma, a simulação foi implementada na forma de um código computacional baseado no ambiente de programação Scilab (Scilab 5.3.0, 2010), que é um programa de distribuição gratuita. Os algoritmos de simulação de cada etapa individual e do ciclo completo são finalmente utilizados para analisar o comportamento da unidade de pré-purificação, verificando como o seu desempenho é afetado por alterações nas variáveis de projeto ou operacionais. Por exemplo, foi investigado o sistema de carregamento do leito que mostrou que a configuração ideal do leito é de 50% de alumina seguido de 50% de zeólita. Variáveis do processo foram também analisadas, a pressão de adsorção, a vazão de alimentação e o tempo do ciclo de adsorção, mostrando que o aumento da vazão de alimentação leva a perda da especificação que pode ser retomada reduzindo-se o tempo do ciclo de adsorção. Mostrou-se também que uma pressão de adsorção maior leva a uma maior remoção de contaminantes.
Resumo:
强外加电场与大调制度在光折变效应的研究中已经得到了广泛应用。采用PDECOL算法, 严格求解光折变带输运方程, 得到外加电场时不同调制度下光折变晶体中随时间变化的空间电荷场、载流子浓度, 并讨论了外加电场对它们的影响。通过将物质方程与耦合波方程联立数值求解, 可得到光折变光栅形成过程中两波耦合增益系数以及光束条纹相位的变化。模拟结果表明, 在强外加电场作用下, 两束记录光之间的光强与相位耦合都得到了增强, 而原有的解析式忽视了强外加电场与大调制度对空间电荷场相位耦合的影响, 此时不再适用。同时发现折射率光
Resumo:
Neste trabalho estudou-se a extracção supercrítica do óleo de grainha de uva, usando dióxido de carbono, e combinou-se este processo com um prétratamento enzimático da semente para aumentar o rendimento global da extracção. A qualidade dos extractos obtidos foi avaliada pelo seu conteúdo em triacilglicerídeos, perfil de ácidos gordos e capacidade antioxidante. Realizaram-se também alguns estudos exploratórios sobre a aplicação de um pré-tratamento de alta pressão (HPP) à grainha da uva. Adicionalmente, efectuou-se o estudo da extracção, fraccionamento e caracterização estrutural das procianidinas da grainha da uva, bem como a avaliação da sua capacidade antioxidante. A extracção de procianidinas da grainha da uva foi efectuada sequencialmente com metanol e acetona/água, tendo sido posteriormente fraccionadas por adição sucessiva de misturas metanol/clorofórmio progressivamente mais concentradas em clorofórmio. A caracterização das procianidinas foi feita por HPLC-UV e LC–MS, antes e depois de sujeitar as amostras a uma tiólise, e também por ESI-MS e ESI-MS/MS. Este estudo permitiu reportar, pela primeira vez, a ocorrência de procianidinas do tipo-A galoiladas na grainha da uva. Os resultados de HPLC-UV permitiram determinar o grau médio de polimerização das procianidinas e a sua composição monomérica em (+)- catequina, (-)-epicatequina e (-)-epicatequina-O-galato. Mostrou-se que a (+)- catequina é o flavan-3-ol terminal mais abundante e a (-)-epicatequina predomina largamente como unidade de extensão. No caso de procianidinas do tipo A, a ligação interflavânica C2-C7 encontra-se essencialmente nas unidades terminais. O grau médio de polimerização das diversas fracções varia entre 1.0 e 10.8. A sua capacidade antioxidante, medida pelo método espectrofotométrico de DPPH•, mostrou-se ser equivalente à de uma amostra comercial de (+)-catequina usada como referência. A partir dos graus médios de polimerização experimentais e das análises de FTIR das fracções correspondentes foi possível obter um modelo preditivo O-PLS com apenas uma variável latente. O pré-tratamento enzimático justificou-se pelo conhecimento existente acerca do uso de enzimas específicas que destroem parcialmente as paredes celulares. Atendendo à composição das paredes celulares da grainha da uva preparou-se uma suspensão contendo protease, xilanase, pectinase e celulase. Para determinar as condições experimentais do pré-tratamento que maximizam o rendimento da extracção, estudou-se o efeito do tempo de reacção, temperatura, pH, diâmetro médio das partículas de grainha moída e a concentração das enzimas. Os incrementos do rendimento da extracção de óleo observados atingiram 163.2%. O estudo da extracção supercrítica (SFE) do óleo da grainha de uva tratada e não-tratada permitiu obter as curvas de extracção correspondentes, bem com analisar a influência das condições operatórias sobre o seu andamento. Montou-se uma instalação laboratorial onde se realizaram experiências com dióxido de carbono a 160, 180, 200 e 220 bar e temperaturas de 313.15 e 323.15 K. Os rendimentos obtidos por SFE foram semelhantes aos de Soxhlet com n-hexano. As curvas de extracção medidas compreendem um primeiro período de extracção, onde se remove cerca de 92-97% do óleo disponível, e um segundo período, essencialmente difusional, com pouco impacto no rendimento final. Os vários extractos recolhidos e o óleo global obtido foram caracterizados para avaliar a sua qualidade e relacioná-la com as condições operatórias de SFE. Determinaram-se o conteúdo total em triacilglicerídeos, o seu perfil de ácidos gordos e a capacidade antioxidante (AOC). Os resultados mostraram que a AOC aumenta com a elevação da pressão e, acentuadamente, com o acréscimo da temperatura. Ao longo da curva de extracção, a AOC é mais pronunciada nos extractos iniciais, nomeadamente nos primeiros 30 a 40% da extracção. A modelação efectuada considerou que o óleo extractável se reparte entre células rompidas, predominantes na periferia da semente, e células intactas, mais interiores. Admitiu-se que o transporte de massa ocorre em série, i.e. das células intactas para as rompidas e destas para o solvente; mostrou-se que a dispersão axial era desprezável. Os balanços materiais à fase fluida e aos volumes de células rompidas e intactas, combinados com os fluxos interno, externo e a relação de equilíbrio foram resolvidos numericamente pelo método das linhas combinado com diferenças finitas atrasadas. O modelo reproduziu bem as curvas experimentais e permitiu simular curvas de eluição e os três perfis de concentração no leito.
Resumo:
The present work has the main goal to study the modeling and simulation of a biphasic separator with induced phase inversion, the MDIF, with the utilization of the finite differences method for the resolution of the partial differencial equations which describe the transport of contaminant s mass fraction inside the equipment s settling chamber. With this aim, was developed the deterministic differential model AMADDA, wich was admensionalizated and then semidiscretizated with the method of lines. The integration of the resultant system of ordinary differential equations was realized by means of a modified algorithm of the Adam-Bashfort- Moulton method, and the sthocastic optimization routine of Basin-Hopping was used in the model s parameter estimation procedure . With the aim to establish a comparative referential for the results obtained with the model AMADDA, were used experimental data presented in previous works of the MDIF s research group. The experimental data and those obtained with the model was assessed regarding its normality by means of the Shapiro-Wilk s test, and validated against the experimental results with the Student s t test and the Kruskal-Wallis s test, depending on the result. The results showed satisfactory performance of the model AMADDA in the evaluation of the MDIF s separation efficiency, being possible to determinate that at 1% significance level the calculated results are equivalent to those determinated experimentally in the reference works
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)