946 resultados para metals flammability
Resumo:
The aim of this work was to study some hyperaccumulator species that could be useful to decontaminate mine soils and also to investigate the bioavailability and uptake of these metals by plants with the addition of organic amendments. Pot experiments were performed with soil samples collected from two mining areas in the north of Madrid, where there was an intense mining activity more than 50 years ago. Three species (Thlaspi arvense, Brassica juncea and Atriplex halimus) were grown under controlled conditions in pots filled with contaminated soils mixed with 0 Mg, 30 Mg and 60 Mg per hectare of two different organic amendments: a commercial compost made of pine bark, peat and wood fiber and other made of horse and sheep manure and wood fiber. Plants were harvested at the end of their crop cycle and were digested in order to measure metal concentration (Zn, Cu and Cd) in roots and shoots. Highest plant metal concentration was observed in pots treated with pine bark amendment and with pure soil due to an increase in metal bioavailability with decreasing pH. Also in those treatments the total plant biomass was lower, even some plants could not germinate. On the contrary, there was a lower metal concentration in plant tissues of pots with manure because its higher pH whereas plant growth was significantly larger so there was an incresing amount of metals removed from soil by plants. Comparing the three species results indicate a higher total metal uptake in A. halimus than B. juncea and T. arvense. In conclusion, results show that pH affects metal bioavailability and uptake by hyperaccumulator plants. Addition of organic amendments could be a successful technique for stabilization of metals in contaminated soils.
Resumo:
Background and aims The high metal bioavailability and the poor conditions of mine soils yield a low plant biomass, limiting the application of phytoremediation techniques. A greenhouse experiment was performed to evaluate the effects of organic amendments on metal stabilization and the potential of Brassica juncea L. for phytostabilization in mine soils. Methods Plants were grown in pots filled with soils collected from two mine sites located in Central Spain mixed with 0, 30 and 60 tha?1 of pine bark compost and horse- and sheep-manure compost. Plant biomass and metal concentrations in roots and shoots were measured. Metal bioavailability was assessed using a rhizosphere-based method (rhizo), which consists of a mixture of low-molecular-weight organic acids to simulate root exudates. Results Manure reduced metal concentrations in shoots (10?50 % reduction of Cu and 40?80 % of Zn in comparison with non-amended soils), bioconcentration factor (10?50 % of Cu and 40?80 % of Zn) and metal bioavailability in soil (40?50 % of Cu and 10?30 % of Zn) due to the high pH and the contribution of organic matter. Manure improved soil fertility and was also able to increase plant biomass (5?20 times in shoots and 3?30 times in roots), which resulted in a greater amount of metals removed from soil and accumulated in roots (increase of 2?7 times of Cu and Zn). Plants grown in pine bark treatments and in non-amended soils showed a limited biomass and high metal concentrations in shoots. Conclusions The addition of manure could be effective for the stabilization of metals and for enhancing the phytostabilization ability of B. juncea in mine soils. In this study, this species resulted to be a potential candidate for phytostabilization in combination with manure, differing from previous results, in which B. juncea had been recognized as a phytoextraction plant.
Resumo:
An analytical expression is derived for the electron thermionic current from heated metals by using a non equilibrium, modified Kappa energy distribution for electrons. This isotropic distribution characterizes the long high energy tails in the electron energy spectrum for low values of the index ? and also accounts for the Fermi energy for the metal electrons. The limit for large ? recovers the classical equilibrium Fermi-Dirac distribution. The predicted electron thermionic current for low ? increases between four and five orders of magnitude with respect to the predictions of the equilibrium Richardson-Dushmann current. The observed departures from this classical expression, also recovered for large ?, would correspond to moderate values of this index. The strong increments predicted by the thermionic emission currents suggest that, under appropriate conditions, materials with non equilibrium electron populations would become more efficient electron emitters at low temperatures.
Resumo:
Dry sewage sludge are being considered as a possible energy source for direct firing. They have interesting properties to be used as an alternative fuel, but also other characteristics must be considered from the point of view of its safe operation: the most important are ignition sensitivity, explosion severity, thermal sensitivity and thermal stability. The aim of this study was to determine if sewage sludge have different characteristics due to different locations or seasons and how this influences their flammability properties. To study these characteristics sludge samples were selected from different locations in Spain, taken during different seasons. In addition, relationships between flammability parameters and chemical analysis were observed. Some parameters can be controlled during normal operation, such as granulometry or humidity, and may mean a decrease in the risk of explosion. Those relationships are well known for other dusts materials, like coal, but not yet for sewage sludge dusts. Finally, properties related to spontaneous combustion were determined (thermal susceptibility and stability). The addition of those properties to the study provides an overview of the thermal behavior of sewage sludge during their utilization, including transport and storage.
Resumo:
Human health problems and solutions. Urban gardening has spread worldwide in recent years as it enhances food security and selfsupply and promotes community integration. However urban soils are significantly enriched in trace elements relative to background levels. Exposure to the soil in urban gardens may therefore result in adverse health effects depending on the degree of contact during gardening, infant recreational activities and ingestion of vegetables grown in them. In order to evaluate this potential risk, 36 composite samples were collected from the top 20 cm of the soil of 6 urban gardens in Madrid. The aqua regia (pseudototal) and glycine-extractable (bioaccessible) concentrations of Co, Cr, Cu, Ni, Pb and Zn were determined by atomic absorption spectrophotometry. Additionally, pH, texture, Fe, Ca, and Mn concentrations, and organic matter and calcium carbonate contents were determined in all urban gardens and their influence on trace element bioaccessibility was analyzed.
Resumo:
The treatment and disposal of sewage sludge is becoming an urgent need whereby different technologies were developed and integrated into the waste cycle all over the world. One of the most used technologies is the thermal drying of the sludge. Thermally dried sewage sludge has interesting properties that allow its use as an alternative fuel, but also needs some consideration from the point of view of its safe operation. The aim of this study was the research on the flammability properties of sewage sludge, including ignition sensitivity, explosion severity, thermal sensitivity and thermal stability. Furthermore relationships among those properties and composition parameters have been determined, added to the study of their variation depending on their origin or season. Finally, properties related to spontaneous combustion were determined. To study these relationships and characteristics sludge samples were selected from different locations in Spain and taken during different seasons.
Resumo:
In the past, mining wastes were left wherever they might lie in the surroundings of the mine area. Unfortunately, inactive and abandoned mines continue to pollute our environment, reason why these sites should be restored with minimum impact. Phytoextraction is an environmental-friendly and cost-effective technology less harmful than traditional methods that uses metal hyperaccumulator or at least tolerant plants to extract heavy metals from polluted soils. One disadvantage of hyperaccumulator species is their slow growth rate and low biomass production. Vetiveria zizanioides (L.) Nash, perennial species adapted to Mediterranean climate has a strong root system which can reach up to 3 m deep, is fast growing, and can survive in sites with high metal levels (Chen et al., 2004). Due to the fact that metals in abandoned mine tailings become strongly bonded to soil solids, humic acids used as chelating agents could increase metal bioavailability (Evangelou et al., 2004; Wilde et al., 2005) and thereby promote higher accumulation in the harvestable parts of the plant. The objective of this study was to examine the performance of humic acid assisted phytoextraction using Vetiveria zizanioides (L.) Nash in heavy metals contaminated soils.
Resumo:
It has been reasoned that the structures of strongly cellular flames in very lean mixtures approach an array of flame balls, each burning as if it were isolated, thereby indicating a connection between the critical conditions required for existence of steady flame balls and those necessary for occurrence of self-sustained premixed combustion. This is the starting assumption of the present study, in which structures of near-limit steady sphericosym-metrical flame balls are investigated with the objective of providing analytic expressions for critical combustion conditions in ultra-lean hydrogen-oxygen mixtures diluted with N2 and water vapor. If attention were restricted to planar premixed flames, then the lean-limit mole fraction of H2 would be found to be roughly ten percent, more than twice the observed flammability limits, thereby emphasizing the relevance of the flame-ball phenomena. Numerical integrations using detailed models for chemistry and radiation show that a onestep chemical-kinetic reduced mechanism based on steady-state assumptions for all chemical intermediates, together with a simple, optically thin approximation for water-vapor radiation, can be used to compute near-limit fuel-lean flame balls with excellent accuracy. The previously developed one-step reaction rate includes a crossover temperature that determines in the first approximation a chemical-kinetic lean limit below which combustión cannot occur, with critical conditions achieved when the diffusion-controlled radiation-free peak temperature, computed with account taken of hydrogen Soret diffusion, is equal to the crossover temperature. First-order corrections are found by activation-energy asymptotics in a solution that involves a near-field radiation-free zone surrounding a spherical flame sheet, together with a far-field radiation-conduction balance for the temperature profile. Different scalings are found depending on whether or not the surrounding atmosphere contains wáter vapor, leading to different analytic expressions for the critical conditions for flame-ball existence, which give results in very good agreement with those obtained by detailed numerical computations.
Resumo:
Pseudo-total (i.e. aqua regia extractable) and gastric-bioaccessible (i.e. glycine + HCl extractable) concentrations of Ca, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in a total of 48 samples collected from six community urban gardens of different characteristics in the city of Madrid (Spain). Calcium carbonate appears to be the soil property that determines the bioaccessibility of a majority of those elements, and the lack of influence of organic matter, pH and texture can be explained by their low levels in the samples (organic matter) or their narrow range of variation (pH and texture). A conservative risk assessment with bioaccessible concentrations in two scenarios, i.e. adult urban farmers and children playing in urban gardens, revealed acceptable levels of risk, but with large differences between urban gardens depending on their history of land use and their proximity to busy areas in the city center. Only in a worst-case scenario in which children who use urban gardens as recreational areas also eat the produce grown in them would the risk exceed the limits of acceptability
Resumo:
According to cognitive linguistics, language has an experiential origin based on perception, sensory motor activities and our knowledge of the world. Our thought operates by establishing similarities, links and associations that enable us to talk about one thing in terms of another as shown in the example of love as a journey (Lakoff and Johnson, 1980). Metaphor and metonymy are conceptual and linguistic tools that make possible most of these cognitive operations. Since metaphor is an essential element of human communication, the discourse of specialised disciplines includes metaphorical mappings and numerous examples of metaphorical expressions, for example in economics, where business is mapped in terms of war (White, 2004; Herrera & White, 2000), electrotechnics with electrical components understood as couples (Roldán- Riejos in preparation) or in civil engineering where a bridge is conceptualized as a person (Roldán-Riejos, 2013). In this paper, the metaphors: WORKING WITH METALS IS COOKING/ TRABAJAR CON METALES ES COCINAR and METALS ARE CULINARY OBJECTS/ LOS METALES SON OBJETOS CULINARIOS are explored. The main aim is to show that the cooking metaphor is widely spread in the metallurgical domain in English and Spanish, although with different nuances in each language due to socio-cultural factors. The method adopted consists of analysing examples taken from the: Bilingual Dictionary of Scientific and Technical Metaphors and Metonymies Spanish- English/English-Spanish, a forthcoming and rigorously documented bilingual dictionary that sums up research on conceptual, linguistic and visual metaphor and metonymy in different areas of engineering (Roldán-Riejos and Molina, 2013). The present paper studies in detail English and Spanish cross-linguistic correspondences related to types of metals and processes. It is suggested that they reflect synesthetic metaphoric mappings. The exploitation of cognitive conceptual metaphor in the ESP classroom is lastly recommended.
Resumo:
Recent experimental data on the conductivity σ+(T), T → 0, on the metallic side of the metal–insulator transition in ideally random (neutron transmutation-doped) 70Ge:Ga have shown that σ+(0) ∝ (N − Nc)μ with μ = ½, confirming earlier ultra-low-temperature results for Si:P. This value is inconsistent with theoretical predictions based on diffusive classical scaling models, but it can be understood by a quantum-directed percolative filamentary amplitude model in which electronic basis states exist which have a well-defined momentum parallel but not normal to the applied electric field. The model, which is based on a new kind of broken symmetry, also explains the anomalous sign reversal of the derivative of the temperature dependence in the critical regime.
Resumo:
The threshold behavior of the transport properties of a random metal in the critical region near a metal–insulator transition is strongly affected by the measuring electromagnetic fields. In spite of the randomness, the electrical conductivity exhibits striking phase-coherent effects due to broken symmetry, which greatly sharpen the transition compared with the predictions of effective medium theories, as previously explained for electrical conductivities. Here broken symmetry explains the sign reversal of the T → 0 magnetoconductance of the metal–insulator transition in Si(B,P), also previously not understood by effective medium theories. Finally, the symmetry-breaking features of quantum percolation theory explain the unexpectedly very small electrical conductivity temperature exponent α = 0.22(2) recently observed in Ni(S,Se)2 alloys at the antiferromagnetic metal–insulator transition below T = 0.8 K.
Resumo:
Metallothioneins (MT) are involved in the scavenging of the toxic heavy metals and protection of cells from reactive oxygen intermediates. To investigate the potential role of the protein Ku in the expression of MT, we measured the level of MT-I mRNA in the parental rat fibroblast cell line (Rat 1) and the cell lines that stably and constitutively overexpress the small subunit, the large subunit, and the heterodimer of Ku. Treatment with CdS04 or ZnS04 elevated the MT-I mRNA level 20- to 30-fold in the parental cells and the cells (Ku-70) that overproduce the small subunit or those (Ku-7080) overexpressing the heterodimer. By contrast, the cells (Ku-80) overexpressing the large subunit of Ku failed to induce MT-I. In vitro transcription assay showed that the MT-I promoter activity was suppressed selectively in the nuclear extracts from Ku-80 cells. The specificity of the repressor function was shown by the induction of hsp 70, another Cd-inducible gene, in Ku-80 cells. Addition of the nuclear extract from Ku-80 cells at the start of the transcription reaction abolished the MT-l promoter activity in the Rat 1 cell extract. The transcript once formed in Rat 1 nuclear extract was not degraded by further incubation with the extract from Ku-80 cells. The repressor was sensitive to heat. The DNA-binding activities of at least four transcription factors that control the MT-I promoter activity were not affected in Ku-80 cells. These observations have set the stage for further exploration of the mechanisms by which the Ku subunit mediates suppression of MT induction.
Resumo:
There is a continual influx of heavy metal contaminants and pollutants into the biosphere from both natural and anthropogenic sources. A complex variety of abiotic and biotic processes affects their speciation and distribution, including adsorption onto and desorption from mineral surfaces, incorporation in precipitates or coprecipitates, release through the dissolution of minerals, and interactions with plants and microbes. Some of these processes can effectively isolate heavy metals from the biosphere, whereas others cause their release or transformation to different species that may be more (or less) bioavailable and/or toxic to organisms. Here we focus on abiotic adsorption and precipitation or coprecipitation processes involving the common heavy metal contaminant lead and the metalloids arsenic and selenium in mine tailings and contaminated soils. We have used extremely intense x-rays from synchrotron sources and a structure-sensitive method known as x-ray absorption fine structure (XAFS) spectroscopy to determine the molecular-level speciation of these elements at concentrations of 50 to several thousand ppm in the contaminated environmental samples as well as in synthetic sorption samples. Our XAFS studies of As and Pb in the mine tailings show that up to 50% of these contaminants in the samples studied may be present as adsorbed species on mineral surfaces, which makes them potentially more bioavailable than when present in sparingly soluble solid phases. Our XAFS studies of Se(VI) sorption on Fe2+-containing sulfates show that this element undergoes redox reactions that transform it into less bioavailable and less toxic species. This type of information on molecular-level speciation of heavy metal and metalloid contaminants in various environmental settings is needed to prioritize remediation efforts and to assess their potential hazard to humans and other organisms.
Resumo:
I relate the historic successes, and present difficulties, of the renormalized quasiparticle theory of metals ("AGD" or Fermi liquid theory). I then describe the best-understood example of a non-Fermi liquid, the normal metallic state of the cuprate superconductors.