923 resultados para medical image processing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper a real-time vision based power line extraction solution is investigated for active UAV guidance. The line extraction algorithm starts from ridge points detected by steerable filters. A collinear line segments fitting algorithm is followed up by considering global and local information together with multiple collinear measurements. GPU boosted algorithm implementation is also investigated in the experiment. The experimental result shows that the proposed algorithm outperforms two baseline line detection algorithms and is able to fitting long collinear line segments. The low computational cost of the algorithm make suitable for real-time applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quality based frame selection is a crucial task in video face recognition, to both improve the recognition rate and to reduce the computational cost. In this paper we present a framework that uses a variety of cues (face symmetry, sharpness, contrast, closeness of mouth, brightness and openness of the eye) to select the highest quality facial images available in a video sequence for recognition. Normalized feature scores are fused using a neural network and frames with high quality scores are used in a Local Gabor Binary Pattern Histogram Sequence based face recognition system. Experiments on the Honda/UCSD database shows that the proposed method selects the best quality face images in the video sequence, resulting in improved recognition performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detailed representations of complex flow datasets are often difficult to generate using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows. We review two popular texture based techniques and their application to flow datasets sourced from active research projects. The techniques investigated were Line integral convolution (LIC) [1], and Image based flow visualisation (IBFV) [18]. We evaluated these and report on their effectiveness from a visualisation perspective. We also report on their ease of implementation and computational overheads.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rates of dehydration/rehydration are important quality parameters for dried products. Theoretically, if there are no adverse effects on the integrity of the tissue structure, it should absorb water to the same moisture content of the initial product before drying.The purpose of this work is to semi-automate the process of detection of cell structure boundaries as a food is dehydrated and rehydrated. This will enable food materials researchers to quantify changes to material’s structure as these processes take place. Images of potato cells as they were dehydrated and rehydrated were taken using an electron microscope. Cell boundaries were detected using an image processing algorithm. Average cell area and perimeter at each stage of dehydration were calculated and plotted versus time. The results show that the algorithm can successfully identify cell boundaries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the next great challenges of cell biology is the determination of the enormous number of protein structures encoded in genomes. In recent years, advances in electron cryo-microscopy and high-resolution single particle analysis have developed to the point where they now provide a methodology for high resolution structure determination. Using this approach, images of randomly oriented single particles are aligned computationally to reconstruct 3-D structures of proteins and even whole viruses. One of the limiting factors in obtaining high-resolution reconstructions is obtaining a large enough representative dataset ($>100,000$ particles). Traditionally particles have been manually picked which is an extremely labour intensive process. The problem is made especially difficult by the low signal-to-noise ratio of the images. This paper describes the development of automatic particle picking software, which has been tested with both negatively stained and cryo-electron micrographs. This algorithm has been shown to be capable of selecting most of the particles, with few false positives. Further work will involve extending the software to detect differently shaped and oriented particles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rank transform is one non-parametric transform which has been applied to the stereo matching problem The advantages of this transform include its invariance to radio metric distortion and its amenability to hardware implementation. This paper describes the derivation of the rank constraint for matching using the rank transform Previous work has shown that this constraint was capable of resolving ambiguous matches thereby improving match reliability A new matching algorithm incorporating this constraint was also proposed. This paper extends on this previous work by proposing a matching algorithm which uses a dimensional match surface in which the match score is computed for every possible template and match window combination. The principal advantage of this algorithm is that the use of the match surface enforces the left�right consistency and uniqueness constraints thus improving the algorithms ability to remove invalid matches Experimental results for a number of test stereo pairs show that the new algorithm is capable of identifying and removing a large number of in incorrect matches particularly in the case of occlusions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fundamental problem faced by stereo vision algorithms is that of determining correspondences between two images which comprise a stereo pair. This paper presents work towards the development of a new matching algorithm, based on the rank transform. This algorithm makes use of both area-based and edge-based information, and is therefore referred to as a hybrid algorithm. In addition, this algorithm uses a number of matching constraints,including the novel rank constraint. Results obtained using a number of test pairs show that the matching algorithm is capable of removing a significant proportion of invalid matches. The accuracy of matching in the vicinity of edges is also improved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fundamental problem faced by stereo vision algorithms is that of determining correspondences between two images which comprise a stereo pair. This paper presents work towards the development of a new matching algorithm, based on the rank transform. This algorithm makes use of both area-based and edge-based information, and is therefore referred to as a hybrid algorithm. In addition, this algorithm uses a number of matching constraints, including the novel rank constraint. Results obtained using a number of test pairs show that the matching algorithm is capable of removing most invalid matches. The accuracy of matching in the vicinity of edges is also improved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rank transform is a non-parametric technique which has been recently proposed for the stereo matching problem. The motivation behind its application to the matching problem is its invariance to certain types of image distortion and noise, as well as its amenability to real-time implementation. This paper derives an analytic expression for the process of matching using the rank transform, and then goes on to derive one constraint which must be satisfied for a correct match. This has been dubbed the rank order constraint or simply the rank constraint. Experimental work has shown that this constraint is capable of resolving ambiguous matches, thereby improving matching reliability. This constraint was incorporated into a new algorithm for matching using the rank transform. This modified algorithm resulted in an increased proportion of correct matches, for all test imagery used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper outlines existing matching diagnostics, which may be used for identifying invalid matches and estimating the probability of a correct match. In addition, it proposes a new diagnostic for error prediction which can be used with the rank and census transforms. Both the existing and the new diagnostics have been evaluated and compared for a number of test images. In each case, a confidence estimate was computed for every location of the disparity map, and disparities having a low confidence estimate removed from the disparity map. Collectively, these confidence estimates may be termed a confidence map. Such information would be useful for potential applications of stereo vision such as automation and navigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mining environment, being complex, irregular, and time-varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two nonparametric transforms, namely, rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. The objective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor should be able to produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this investigation. A number of area based matching metrics have been implemented, including the SAD, SSD, NCC, and their zero-meaned versions. The NCC and the zero meaned SAD and SSD were found to produce the disparity maps with the highest proportion of valid matches. The plain SAD and SSD were the least computationally expensive, due to all their operations taking place in integer arithmetic, however, they were extremely sensitive to radiometric distortion. Non-parametric techniques for matching, in particular, the rank and the census transform, have also been investigated. The rank and census transforms were found to be robust with respect to radiometric distortion, as well as being able to produce disparity maps with a high proportion of valid matches. An additional advantage of both the rank and the census transform is their amenability to fast hardware implementation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mining environment presents a challenging prospect for stereo vision. Our objective is to produce a stereo vision sensor suited to close-range scenes consisting mostly of rocks. This sensor should produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this application. This paper compares a number of stereo matching algorithms in terms of robustness and suitability to fast implementation. These include traditional area-based algorithms, and algorithms based on non-parametric transforms, notably the rank and census transforms. Our experimental results show that the rank and census transforms are robust with respect to radiometric distortion and introduce less computational complexity than conventional area-based matching techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional area-based matching techniques make use of similarity metrics such as the Sum of Absolute Differences(SAD), Sum of Squared Differences (SSD) and Normalised Cross Correlation (NCC). Non-parametric matching algorithms such as the rank and census rely on the relative ordering of pixel values rather than the pixels themselves as a similarity measure. Both traditional area-based and non-parametric stereo matching techniques have an algorithmic structure which is amenable to fast hardware realisation. This investigation undertakes a performance assessment of these two families of algorithms for robustness to radiometric distortion and random noise. A generic implementation framework is presented for the stereo matching problem and the relative hardware requirements for the various metrics investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper assesses the suitability of a number of matching techniques for use in a stereo vision sensor for close range scenes consisting primarily of rocks. These include traditional area-based matching metrics, and non-parametric transforms, in particular, the rank and census transforms. Experimental results show that the rank and census transforms exhibit a number of clear advantages over area-based matching metrics, including their low computational complexity, and robustness to certain types of distortion.