958 resultados para manned and unmanned aircraft


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the use of eigenvalue stability analysis of very large dimension aeroelastic numerical models arising from the exploitation of computational fluid dynamics is reviewed. A formulation based on a block reduction of the system Jacobian proves powerful to allow various numerical algorithms to be exploited, including frequency domain solvers, reconstruction of a term describing the fluid–structure interaction from the sparse data which incurs the main computational cost, and sampling to place the expensive samples where they are most needed. The stability formulation also allows non-deterministic analysis to be carried out very efficiently through the use of an approximate Newton solver. Finally, the system eigenvectors are exploited to produce nonlinear and parameterised reduced order models for computing limit cycle responses. The performance of the methods is illustrated with results from a number of academic and large dimension aircraft test cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unmanned surface vehicles (USVs) are able to accomplish difficult and challenging tasks both in civilian and defence sectors without endangering human lives. Their ability to work round the clock makes them well-suited for matters that demand immediate attention. These issues include but not limited to mines countermeasures, measuring the extent of an oil spill and locating the source of a chemical discharge. A number of USV programmes have emerged in the last decade for a variety of aforementioned purposes. Springer USV is one such research project highlighted in this paper. The intention herein is to report results emanating from data acquired from experiments on the Springer vessel whilst testing its advanced navigation, guidance and control (NGC) subsystems. The algorithms developed for these systems are based on soft-computing methodologies. A novel form of data fusion navigation algorithm has been developed and integrated with a modified optimal controller. Experimental results are presented and analysed for various scenarios including single and multiple waypoints tracking and fixed and time-varying reference bearings. It is demonstrated that the proposed NGC system provides promising results despite the presence of modelling uncertainty and external disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over recent years, a number of marine autopilots designed using linear techniques have underperformed owing to their inability to cope with nonlinear vessel dynamics. To this end, a new design framework for the development of nonlinear autopilots is proposed herein. Local control networks (LCNs) can be used in the design of nonlinear control systems. In this paper, a LCN approach is taken in the design of a nonlinear autopilot for controlling the nonlinear yaw dynamics of an unmanned surface vehicle known as Springer. It is considered the approach is the first of its kind to be used in marine control systems design. Simulation results are presented and the performance of the nonlinear autopilot is compared with that of an existing Springer linear quadratic Gaussian (LQG) autopilot using standard system performance criteria. From the results it can be concluded the LCN autopilot out performed that based on LQG techniques in terms of the selected criteria. Also it provided more energy saving control strategies and would thereby increase operational duration times for the vehicle during real-time missions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assembling aircraft stiffened panels using friction stir welding offers potential to reduce fabrication time in comparison to current mechanical fastener assembly, making it economically feasible to select structurally desirable stiffener pitching and novel panel configurations. With such a departure from the traditional fabrication process, much research has been conducted on producing strong reliable welds, with less examination of the impact of welding process residual effects on panel structural behaviour and the development of appropriate design methods. This article significantly expands the available panel level compressive strength knowledge, demonstrating the strength potential of a welded aircraft panel with multiple lateral and longitudinal stiffener bays. An accompanying computational study has determined the most significant process residual effects that influence panel strength and the potential extent of panel degradation. The experimental results have also been used to validate a previously published design method, suggesting accurate predictions can be made if the conventional aerospace design methods are modified to acknowledge the welding altered panel properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In today’s atmosphere of constrained defense spending and reduced research budgets, determining how to allocate resources for research and design has become a critical and challenging task. In the area of aircraft design there are many promising technologies to be explored, yet limited funds with which to explore them. In addition, issues concerning uncertainty in technology readiness as well as the quantification of the impact of a technology (or combinations of technologies), are of key importance during the design process. This paper presents a methodology that details a comprehensive and structured process in which to quantitatively explore the effects of technology for a given baseline aircraft. This process, called Technology Impact Forecasting (TIF), involves the creation of a assessment environment for use in conjunction with defined technology scenarios, and will have a significant impact on resource allocation strategies for defense acquisition. The advantages and limitations of the method are discussed. In addition, an example TIF application, that of an Uninhabited Combat Aerial Vehicle, is presented and serves to illustrate the applicability of this methodology to a military system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Military decision makers need to understand and assess the benefits and consequences of their decisions in order to make cost efficient, timely, and successful choices. Technology selection is one such critical decision, especially when considering the design or retrofit of a complex system, such as an aircraft. An integrated and systematic methodology that will support decision-making between technology alternatives and options while assessing the consequences of such decisions is a key enabler. This paper presents and demonstrates, through application to a notional medium range short takeoff and landing (STOL) aircraft, one such enabler: the Technology Impact Forecasting (TIF) method. The goal of the TIF process is to explore both generic, undefined areas of technology, as well as specific technologies, and assess their potential impacts. This is actualized through the development and use of technology scenarios, and allows the designer to determine where to allocate resources for further technology definition and refinement, as well as provide useful design information. The paper particularly discusses the use of technology scenarios and demonstrates their use in the exploration of seven technologies of varying technology readiness levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years unmanned vehicles have grown in popularity, with an ever increasing number of applications in industry, the military and research within air, ground and marine domains. In particular, the challenges posed by unmanned marine vehicles in order to increase the level of autonomy include automatic obstacle avoidance and conformance with the Rules of the Road when navigating in the presence of other maritime traffic. The USV Master Plan which has been established for the US Navy outlines a list of objectives for improving autonomy in order to increase mission diversity and reduce the amount of supervisory intervention. This paper addresses the specific development needs based on notable research carried out to date, primarily with regard to navigation, guidance, control and motion planning. The integration of the International Regulations for Avoiding Collisions at Sea within the obstacle avoidance protocols seeks to prevent maritime accidents attributed to human error. The addition of these critical safety measures may be key to a future growth in demand for USVs, as they serve to pave the way for establishing legal policies for unmanned vessels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of an automated system for the quality assessment of aerodrome ground lighting (AGL), in accordance with associated standards and recommendations, is presented. The system is composed of an image sensor, placed inside the cockpit of an aircraft to record images of the AGL during a normal descent to an aerodrome. A model-based methodology is used to ascertain the optimum match between a template of the AGL and the actual image data in order to calculate the position and orientation of the camera at the instant the image was acquired. The camera position and orientation data are used along with the pixel grey level for each imaged luminaire, to estimate a value for the luminous intensity of a given luminaire. This can then be compared with the expected brightness for that luminaire to ensure it is operating to the required standards. As such, a metric for the quality of the AGL pattern is determined. Experiments on real image data is presented to demonstrate the application and effectiveness of the system.