960 resultados para macrophage migration inhibition factor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diffusible messenger NO plays multiple roles in neuroprotection, neurodegeneration, and brain plasticity. Argininosuccinate synthase (AS) is a ubiquitous enzyme in mammals and the key enzyme of the NO-citrulline cycle, because it provides the substrate L-arginine for subsequent NO synthesis by inducible, endothelial, and neuronal NO synthase (NOS). Here, we provide evidence for the participation of AS and of the NO-citrulline cycle in the progress of differentiation of neural stem cells (NSC) into neurons, astrocytes, and oligodendrocytes. AS expression and activity and neuronal NOS expression, as well as L-arginine and NOx production, increased along neural differentiation, whereas endothelial NOS expression was augmented in conditions of chronic NOS inhibition during differentiation, indicating that this NOS isoform is amenable to modulation by extracellular cues. AS and NOS inhibition caused a delay in the progress of neural differentiation, as suggested by the decreased percentage of terminally differentiated cells. On the other hand, BDNF reversed the delay of neural differentiation of NSC caused by inhibition of NOx production. Alikely cause is the lack of NO, which up-regulated p75 neurotrophin receptor expression, a receptor required for BDNF-induced differentiation of NSC. We conclude that the NO-citrulline cycle acts together with BDNF for maintaining the progress of neural differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been previously shown that besides its classical role in blood pressure control the reninangiotensin system, mainly by action of angiotensin II on the AT1 receptor, exerts pro-inflammatory effects such as by inducing the production of cytokines. More recently, alternative pathways to this system were described, such as binding of angiotensin-(17) to receptor Mas, which was shown to counteract some of the effects evoked by activation of the angiotensin IIAT1 receptor axis. Here, by means of different molecular approaches we investigated the role of angiotensin-(17) in modulating inflammatory responses triggered in mouse peritoneal macrophages. Our results show that receptor Mas transcripts were up-regulated by eightfold in LPS-induced macrophages. Interestingly, macrophage stimulation with angiotensin-(17), following to LPS exposure, evoked an attenuation in expression of TNF-a and IL-6 pro-inflammatory cytokines; where this event was abolished when the receptor Mas selective antagonist A779 was also included. We then used heterologous expression of the receptor Mas in HEK293T cells to search for the molecular mechanisms underlying the angiotensin-(17)-mediated anti-inflammatory responses by a kinase array; what suggested the involvement of the Src kinase family. In LPS-induced macrophages, this finding was corroborated using the PP2 compound, a specific Src kinase inhibitor; and also by Western blotting when we observed that Ang-(17) attenuated the phosphorylation levels of Lyn, a member of the Src kinase family. Our findings bring evidence for an anti-inflammatory role for angiotensin-(17) at the cellular level, as well as show that its probable mechanism of action includes the modulation of Src kinases activities. J. Cell. Physiol. 227: 21172122, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that during inflammatory responses the nuclear factor kappa B (NF-kappa B) induces the synthesis of melatonin by macrophages and that macrophage-synthesized melatonin modulates the function of these professional phagocytes in an autocrine manner. Expression of a DsRed2 fluorescent reporter driven by regions of the aa-nat promoter, that encodes the key enzyme involved in melatonin synthesis (arylalkylamine-N-acetyltransferase), containing one or two upstream kappa B binding sites in RAW 264.7 macrophage cell lines was repressed when NF-kappa B activity was inhibited by blocking its nuclear translocation or its DNA binding activity or by silencing the transcription of the RelA or c-Rel NF-kappa B subunits. Therefore, transcription of aa-nat driven by NF-kappa B dimers containing RelA or c-Rel subunits mediates pathogen-associated molecular patterns (PAMPs) or pro-inflammatory cytokine-induced melatonin synthesis in macrophages. Furthermore, melatonin acts in an autocrine manner to potentiate macrophage phagocytic activity, whereas luzindole, a competitive antagonist of melatonin receptors, decreases macrophage phagocytic activity. The opposing functions of NF-kappa B in the modulation of AA-NAT expression in pinealocytes and macrophages may represent the key mechanism for the switch in the source of melatonin from the pineal gland to immune-competent cells during the development of an inflammatory response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms responsible for containing activity in systems represented by networks are crucial in various phenomena, for example, in diseases such as epilepsy that affect the neuronal networks and for information dissemination in social networks. The first models to account for contained activity included triggering and inhibition processes, but they cannot be applied to social networks where inhibition is clearly absent. A recent model showed that contained activity can be achieved with no need of inhibition processes provided that the network is subdivided into modules (communities). In this paper, we introduce a new concept inspired in the Hebbian theory, through which containment of activity is achieved by incorporating a dynamics based on a decaying activity in a random walk mechanism preferential to the node activity. Upon selecting the decay coefficient within a proper range, we observed sustained activity in all the networks tested, namely, random, Barabasi-Albert and geographical networks. The generality of this finding was confirmed by showing that modularity is no longer needed if the dynamics based on the integrate-and-fire dynamics incorporated the decay factor. Taken together, these results provide a proof of principle that persistent, restrained network activation might occur in the absence of any particular topological structure. This may be the reason why neuronal activity does not spread out to the entire neuronal network, even when no special topological organization exists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyphenol-enriched fractions from natural sources have been proposed to interfere with angiogenesis in pathological conditions. We recently reported that red propolis polyphenols (RPP) exert antiangiogenic activity. However, molecular mechanisms of this activity remain unclear. Here, we aimed at characterizing molecular mechanisms to explain the impact of RPP on endothelial cells' (EC) physiology. We used in vitro and ex and in vivo models to test the hypothesis that RPP inhibit angiogenesis by affecting hypoxia-inducible factor-1 alpha (HIF1 alpha) stabilization in EC. RPP (10 mg/L) affected angiogenesis by reducing migration and sprouting of EC, attenuated the formation of new blood vessels, and decreased the differentiation of embryonic stem cells into CD31-positive cells. Moreover, RPP (10 mg/L) inhibited hypoxia- or dimethyloxallylglycine-induced mRNA and protein expression of the crucial angiogenesis promoter vascular endothelial growth factor (VEGF) in a time-dependent mariner. Under hypoxic conditions, RPP at 10 mg/L, supplied for 1-4 h, decreased HIF1 alpha protein accumulation, which in turn attenuated VEGF gene expression. In addition, RPP reduced the HIF1 alpha protein half-life from similar to 58 min to 38 min under hypoxic conditions. The reduced HIF1 alpha protein half-life was associated with an increase in the von Hippel-Lindau (pVHL)-dependent proteasomal degradation of HIF1 alpha. RPP (10 mg/L, 4 h) downregulated Cdc42 protein expression. This caused a corresponding increase in pVHL protein levels and a subsequent degradation of HIF1 alpha. In summary, we have elucidated the underlying mechanism for the antiangiogenic action of RPP, which attenuates HIF1 alpha protein accumulation and signaling. J. Nutr. 142: 441-447, 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pattern recognition receptors for fungi include dectin-1 and mannose receptor, and these mediate phagocytosis, as well as production of cytokines, reactive oxygen species, and the lipid mediator leukotriene B-4 (LTB4). The influence of G protein-coupled receptor ligands such as LTB4 on fungal pattern recognition receptor expression is unknown. In this study, we investigated the role of LTB4 signaling in dectin-1 expression and responsiveness in macrophages. Genetic and pharmacologic approaches showed that LTB4 production and signaling through its high-affinity G protein-coupled receptor leukotriene B4 receptor 1 (BLT1) direct dectin-1-dependent binding, ingestion, and cytokine production both in vitro and in vivo. Impaired responses to fungal glucans correlated with lower dectin-1 expression in macrophages from leukotriene (LT)- and BLT1-deficent mice than their wildtype counterparts. LTB4 increased the expression of the transcription factor responsible for dectin-1 expression, PU.1, and PU.1 small interfering RNA abolished LTB4-enhanced dectin-1 expression. GM-CSF controls PU.1 expression, and this cytokine was decreased in LT-deficient macrophages. Addition of GM-CSF to LT-deficient cells restored expression of dectin-1 and PU.1, as well as dectin-1 responsiveness. In addition, LTB4 effects on dectin-1, PU.1, and cytokine production were blunted in GM-CSF-/- macrophages. Our results identify LTB4-BLT1 signaling as an unrecognized controller of dectin-1 transcription via GM-CSF and PU.1 that is required for fungi-protective host responses. The Journal of Immunology, 2012, 189: 906-915.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The objectives of our study were as follows: 1) to analyze the prognostic value of macrophage infiltration in primary IgA nephropathy (IgAN) and 2) to study the relationship between macrophages and other factors associated with the development of renal fibrosis, including mast cells, TGF-beta 1, alpha-SMA and NF-kB. METHODS: We analyzed 62 patients who had been diagnosed with IgAN between 1987 and 2003. Immunohistochemical staining was performed with monoclonal antibodies against CD68 and mast cell tryptase and polyclonal antibodies against TGF-beta 1, alpha-SMA and NF-kB p65. We also used Southwestern histochemistry for the in situ detection of activated NF-kB. RESULTS: The infiltration of macrophages into the tubulointerstitial compartment correlated with unfavorable clinical and histological parameters, and a worse clinical course of IgAN was significantly associated with the number of tubulointerstitial macrophages. Kaplan-Meier curves demonstrated that increased macrophage infiltration was associated with decreased renal survival. Moreover, the presence of macrophages was associated with mast cells, tubulointerstitial alpha-SMA expression and NF-kB activation (IH and Southwestern histochemistry). In the multivariate analysis, the two parameters that correlated with macrophage infiltration, proteinuria and tubulointerstitial injury, were independently associated with an unfavorable clinical course. CONCLUSION: An increased number of macrophages in the tubulointerstitial area may serve as a predictive factor for poor prognosis in patients with IgAN, and these cells were also associated with the expression of pro-fibrotic factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclosporine (CsA) remains an important immunosuppressant for transplantation and for treatment of autoimmune diseases. The most troublesome side effect of CsA is renal injury. Acute CsA-induced nephrotoxicity is characterized by reduced renal blood flow (RBF) and glomerular filtration rate (GFR) due to afferent arteriole vasoconstriction. Annexin A1 (ANXA1) is a potent anti-inflammatory protein with protective effect in renal ischemia/reperfusion injury. Here we study the effects of ANXA1 treatment in an experimental model of acute CsA nephrotoxicity. Salt-depleted rats were randomized to treatment with VH (vehicles 1 mL/kg body weight/day), ANXA1 (Ac2-26 peptide 1 mg/kg body weight/day intraperitoneally), CsA (20 mg/kg body weight/day subcutaneously) and CsA + ANXA1 (combination) for seven days. We compared renal function and hemodynamics, renal histopathology, renal tissue macrophage infiltration and renal ANXA1 expression between the four groups. CsA significantly impaired GFR and RBF, caused tubular dilation and macrophage infiltration and increased ANXA1 renal tissue expression. Treatment with ANXA1 attenuated CSA-induced hemodynamic changes, tubular injury and macrophage infiltration. ANXA1 treatment attenuated renal hemodynamic injury and inflammation in an acute CsA nephrotoxicity model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. After brain death (BD) donors usually experience cardiac dysfunction, which is responsible for a considerable number of unused organs. Causes of this cardiac dysfunction are not fully understood. Some authors argue that autonomic storm with severe hemodynamic instability leads to inflammatory activation and myocardial dysfunction. Objectives. To investigate the hypothesis that thoracic epidural anesthesia blocks autonomic storm and improves graft condition by reducing the inflammatory response. Methods. Twenty-eight male Wistar rats (250-350 g) allocated to four groups received saline or bupivacaine via an epidural catheter at various times in relation to brain-death induction. Brain death was induced by a sudden increase in intracranial pressure by rapid inflation of a ballon catheter in the extradural space. Blood gases, electrolytes, and lactate analyses were performed at time zero, and 3 and 6 hours. Blood leukocytes were counted at 0 and 6 hours. After 6 hours of BD, we performed euthanasia to measure vascular adhesion molecule (VCAM)-1, intracellular adhesion molecule (ICAM)-1, interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha, Bcl-2 and caspase-3 on cardiac tissue. Results. Thoracic epidural anesthesia was effective to block the autonomic storm with a significant difference in mean arterial pressure between the untreated (saline) and the bupivacaine group before BD (P < .05). However, no significant difference was observed for the expressions of VCAM-1, ICAM-1, TNF-alpha, IL-1 beta, Bcl-2, and caspase-3 (P > .05). Conclusion. Autonomic storm did not seem to be responsible for the inflammatory changes associated with BD; thoracic epidural anesthesia did not modify the expression of inflammatory mediators although it effectively blocked the autonomic storm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strongyloidiasis is an intestinal parasitosis with an obligatory pulmonary cycle. A Th2-type immune response is induced and amplifies the cellular response through the secretion of inflammatory mediators. Although this response has been described as being similar to asthma, airway remodeling during pulmonary migration of larvae has not yet been established. The aim of this study was to identify the occurrence of airway remodeling during Strongyloides venezuelensis (S. v.) infection and to determine the ability of dexamethasone treatment to interfere with the mechanisms involved in this process. Rats were inoculated with 9,000 S. v. larvae, treated with dexamethasone (2 mg/kg) and killed at 1, 3, 5, 7, 14 and 21 days. Morphological and morphometric analyzes with routine stains and immunohistochemistry were conducted, and some inflammatory mediators were evaluated using ELISA. Goblet cell hyperplasia and increased bronchiolar thickness, characterized by edema, neovascularization, inflammatory infiltrate, collagen deposition and enlargement of the smooth muscle cell layer were observed. VEGF, IL1-beta and IL-4 levels were elevated throughout the course of the infection. The morphological findings and the immunomodulatory response to the infection were drastically reduced in dexamethasone-treated rats. The pulmonary migration of S. venezuelensis larvae produced a transitory, but significant amount of airway remodeling with a slight residual bronchiolar fibrosis. The exact mechanisms involved in this process require further study. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion envenomation. There is currently a need for new scorpion anti-venoms that are more effective and less harmful. This study attempted to produce human monoclonal antibodies capable of inhibiting the activity of T. serrulatus venom (TsV), using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Four rounds of phage antibody selection were performed, and the round with the highest phage antibody titer was chosen for the production of monoclonal phage antibodies and for further analysis. The scFv 2A, designated serrumab, was selected for the production and purification of soluble antibody fragments. In a murine peritoneal macrophage cell line (J774.1), in vitro assays of the cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and IL-10 were performed. In male BALB/c mice, in vivo assays of plasma urea, creatinine, aspartate transaminase, and glucose were performed, as well as of neutrophil recruitment and leukocyte counts. It was found that serrumab inhibited the TsV-induced increases in the production of IL-6, TNF alpha, and IL-10 in J774.1 cells. The in vivo inhibition assay showed that serrumab also prevented TsV-induced increases in the plasma levels of urea, creatinine, aspartate transaminase, and glucose, as well as preventing the TsV-induced increase in neutrophil recruitment. The results indicate that the human monoclonal antibody serrumab is a candidate for inclusion in a mixture of specific antibodies to the various toxins present in TsV. Therefore, serrumab shows promise for use in the production of new anti-venom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective:3,4-Methylenedioxymethamphetamine(MDMA), or ecstasy, is a synthetic drug used recreationally, mainly by young people. It has been suggested that MDMA has a Th cell skewing effect, in which Th1 cell activity is suppressed and Th2 cell activity is increased. Experimental allergic airway inflammation in ovalbumin (OVA)-sensitized rodents is a useful model to study Th2 response; therefore, based on the Th2 skewing effect of MDMA, we studied MDMA in a model of allergic lung inflammation in OVA-sensitized mice. Methods: We evaluated cell trafficking in the bronchoalveolar lavage fluid, blood and bone marrow; cytokine production; L-selectin expression and lung histology. We also investigated the effects of MDMA on tracheal reactivity in vitro and mast cell degranulation. Results: We found that MDMA given prior to OVA challenge in OVA-sensitized mice decreased leukocyte migration into the lung, as revealed by a lower cell count in the bronchoalveolar lavage fluid and lung histologic analysis. We also showed that MDMA decreased expression of both Th2-like cytokines (IL-4, IL-5 and IL-10) and adhesion molecules (L-selectin). Moreover, we showed that the hypothalamus-pituitary-adrenal axis is partially involved in the MDMA-induced reduction in leukocyte migration into the lung. Finally, we showed that MDMA decreased tracheal reactivity to methacholine as well as mast cell degranulation in situ. Conclusions:Thus, we report here that MDMA given prior to OVA challenge in OVA-sensitized allergic mice is able to decrease lung inflammation and airway reactivity and that hypothalamus-pituitary-adrenal axis activation is partially involved. Together, the data strongly suggest an involvement of a neuroinnmune mechanism in the effects of MDMA on lung inflammatory response and cell recruitment to the lungs of allergic animals. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To assess the immunogenicity and safety of non-adjuvanted influenza A H1N1/2009 vaccine in patients with juvenile autoimmune rheumatic disease (ARD) and healthy controls, because data are limited to the adult rheumatologic population. Method's. A total of 237 patients with juvenile ARD [juvenile systemic lupus erythematosus (JSLE), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), juvenile scleroderma, and vasculitis] and 91 healthy controls were vaccinated. Serology for anti-H1N1 was performed by hemagglutination inhibition assay. Seroprotection rate, seroconversion rate, and factor-increase in geometric mean titer (GMT) were calculated. Adverse events were evaluated. Results. Age was comparable in patients and controls (14.8 +/- 3.0 vs 14.6 +/- 3.7 years, respectively; p = 0.47). Three weeks after immunization, seroprotection rate (81.4% vs 95.6%; p = 0.0007), seroconversion rate (74.3 vs 95.6%; p < 0.0001), and the factor-increase in GMT (12.9 vs 20.3; p = 0.012) were significantly lower in patients with juvenile ARD versus controls. Subgroup analysis revealed reduced seroconversion rates in JSLE (p < 0.0001), JIA (p = 0.008), JDM (p = 0.025), and vasculitis (p = 0.017). Seroprotection (p < 0.0001) and GMT (p < 0.0001) were decreased only in JSLE. Glucocorticoid use and lymphopenia were associated with lower seroconversion rates (60.4 vs 82.9%; p = 0.0001; and 55.6 vs 77.2%; p = 0.012). Multivariate logistic regression including diseases, lymphopenia, glucocorticoid, and immunosuppressants demonstrated that only glucocorticoid use (p = 0.012) remained significant. Conclusion. This is the largest study to demonstrate a reduced but adequate immune response to H1N1 vaccine in patients with juvenile ARD. It identified current glucocorticoid use as the major factor for decreased antibody production. The short-term safety results support its routine recommendation for patients with juvenile ARD. ClinicalTrials.gov; NCT01151644. (First Release Nov 15 2011; J Rheumatol 2012;39:167-73; doi:10.3899/jrheum.110721)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the role of TLR2, TLR4 and MyD88 in sepsis-induced AKI. C57BL/6 TLR2(-/-), TLR4(-/-) and MyD88(-/-) male mice were subjected to sepsis by cecal ligation and puncture (CLP). Twenty four hours later, kidney tissue and blood samples were collected for analysis. The TLR2(-/-), TLR4(-/-) and MyD88(-/-) mice that were subjected to CLP had preserved renal morphology, and fewer areas of hypoxia and apoptosis compared with the wild-type C57BL/6 mice (WT). MyD88(-/-) mice were completely protected compared with the WT mice. We also observed reduced expression of proinflammatory cytokines in the kidneys of the knockout mice compared with those of the WT mice and subsequent inhibition of increased vascular permeability in the kidneys of the knockout mice. The WT mice had increased GR1(+low) cells migration compared with the knockout mice and decreased in GR1(+high) cells migration into the peritoneal cavity. The TLR2(-/-), TLR4(-/-), and MyD88(-/-) mice had lower neutrophil infiltration in the kidneys. Depletion of neutrophils in the WT mice led to protection of renal function and less inflammation in the kidneys of these mice. Innate immunity participates in polymicrobial sepsis-induced AKI, mainly through the MyD88 pathway, by leading to an increased migration of neutrophils to the kidney, increased production of proinflammatory cytokines, vascular permeability, hypoxia and apoptosis of tubular cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF-beta 1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models. Methods: The mRNA expression levels of TGF-beta isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF-beta 1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays. Results: In general, TGF-beta 2, T beta RI and T beta RII are over-expressed in more aggressive cells, except for T beta RI, which was also highly expressed in ZR-75-1 cells. In addition, TGF-beta 1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF-beta 1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF-beta 1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF-beta 1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF-beta 1 induction of pro-MMP-9 and TIMP-2 proteins. TGF-beta 1-enhanced migration and invasion capacities were blocked by p38MAPK, ERK1/2 and MMP inhibitors. Conclusion: Altogether, our results support that TGF-beta 1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-beta 1 still remains a promising target for breast cancer treatment.