926 resultados para low temperature detector
Resumo:
The performance of La(2-x)M(x)CuO(4) perovskites (where M = Ce, Ca or Sr) as catalysts for the water-gas shift reaction was investigated at 290 degrees C and 360 degrees C. The catalysts were characterized by EDS, XRD, N(2) adsorption-desorption, XPS and XANES. The XRD results showed that all the perovskites exhibited a single phase (the presence of perovskite structure), suggesting the incorporation of metals in the perovskite structure. The XPS and XANES results showed the presence of Cu(2+) on the surface. The perovskites that exhibited the best catalytic performance were La(2-x)Ce(x)CuO(4) perovslcites, with CO conversions of 85%-90%. Moreover, these perovskites have higher surface areas and larger amounts of Cu on the surface. And Ce has a higher filled energy level than the other metals, increasing the energy of the valence band of Ce and providing more electrons for the reaction. Besides, the La(1.80)Ca(0.20)CuO(4) perovskite showed a good catalytic performance.
Resumo:
Freestanding castor oil-based polyurethane (PU) film was obtained using spin-coating method. The effect of polyol content was analysed by means of thermally stimulated depolarisation current and AC dielectric measurements techniques. Two relaxation peaks were observed in the temperature range of -40 to 60 degrees C for PU with different polyol contents. The presence of polyol excess provides a shift to lower temperature of the a relaxation and the decrease in the activation energy of the transition in this region might be attributed to the plasticising effect of the polyol. The peak at higher temperature is due to the Maxwell-Wagner-Sillars relaxation, which also shifts in the low temperature direction as the polyol content is increased.
Resumo:
Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).
Resumo:
The study reported here is part of a large project for evaluation of the Thermo-Chemical Accumulator (TCA), a technology under development by the Swedish company ClimateWell AB. The studies concentrate on the use of the technology for comfort cooling. This report concentrates on measurements in the laboratory, modelling and system simulation. The TCA is a three-phase absorption heat pump that stores energy in the form of crystallised salt, in this case Lithium Chloride (LiCl) with water being the other substance. The process requires vacuum conditions as with standard absorption chillers using LiBr/water. Measurements were carried out in the laboratories at the Solar Energy Research Center SERC, at Högskolan Dalarna as well as at ClimateWell AB. The measurements at SERC were performed on a prototype version 7:1 and showed that this prototype had several problems resulting in poor and unreliable performance. The main results were that: there was significant corrosion leading to non-condensable gases that in turn caused very poor performance; unwanted crystallisation caused blockages as well as inconsistent behaviour; poor wetting of the heat exchangers resulted in relatively high temperature drops there. A measured thermal COP for cooling of 0.46 was found, which is significantly lower than the theoretical value. These findings resulted in a thorough redesign for the new prototype, called ClimateWell 10 (CW10), which was tested briefly by the authors at ClimateWell. The data collected here was not large, but enough to show that the machine worked consistently with no noticeable vacuum problems. It was also sufficient for identifying the main parameters in a simulation model developed for the TRNSYS simulation environment, but not enough to verify the model properly. This model was shown to be able to simulate the dynamic as well as static performance of the CW10, and was then used in a series of system simulations. A single system model was developed as the basis of the system simulations, consisting of a CW10 machine, 30 m2 flat plate solar collectors with backup boiler and an office with a design cooling load in Stockholm of 50 W/m2, resulting in a 7.5 kW design load for the 150 m2 floor area. Two base cases were defined based on this: one for Stockholm using a dry cooler with design cooling rate of 30 kW; one for Madrid with a cooling tower with design cooling rate of 34 kW. A number of parametric studies were performed based on these two base cases. These showed that the temperature lift is a limiting factor for cooling for higher ambient temperatures and for charging with fixed temperature source such as district heating. The simulated evacuated tube collector performs only marginally better than a good flat plate collector if considering the gross area, the margin being greater for larger solar fractions. For 30 m2 collector a solar faction of 49% and 67% were achieved for the Stockholm and Madrid base cases respectively. The average annual efficiency of the collector in Stockholm (12%) was much lower than that in Madrid (19%). The thermal COP was simulated to be approximately 0.70, but has not been possible to verify with measured data. The annual electrical COP was shown to be very dependent on the cooling load as a large proportion of electrical use is for components that are permanently on. For the cooling loads studied, the annual electrical COP ranged from 2.2 for a 2000 kWh cooling load to 18.0 for a 21000 kWh cooling load. There is however a potential to reduce the electricity consumption in the machine, which would improve these figures significantly. It was shown that a cooling tower is necessary for the Madrid climate, whereas a dry cooler is sufficient for Stockholm although a cooling tower does improve performance. The simulation study was very shallow and has shown a number of areas that are important to study in more depth. One such area is advanced control strategy, which is necessary to mitigate the weakness of the technology (low temperature lift for cooling) and to optimally use its strength (storage).
Resumo:
The use of ceramic material as refractories in the manufacturing industry is a common practice worldwide. During usage, for example in the production of steel, these materials do experience severe working conditions including high temperatures, low pressures and corrosive environments. This results in lowered service lives and high consumptions of these materials. This, in turn, affects the productivity of the whole steel plant and thereby the cost. In order to investigate how the service life can be improved, studies have been carried out for refractories used in the inner lining of the steel ladles. More specifically, from the slag zone, where the corrosion is most severe. By combining thermodynamic simulations, plant trails and post-mortem studies of the refractories after service, vital information about the behaviour of the slagline refractories during steel refining and the causes of the accelerated wear in this ladle area has been achieved. The results from these studies show that the wear of the slagline refractories of the ladle is initiated at the preheating station, through reduction-oxidation reactions. The degree of the decarburization process is mostly dependent on the preheating fuel or the environment. For refractories without antioxidants, refractory decarburization is slower when coal gas is used in ladle preheating than when a mixture of oil and air is used. In addition, ladle preheating of the refractories without antioxidants leads to direct wear of the slagline refractories. This is due to the total loss of the matrix strength, which results in a sand-like product. Thermal chemical changes that take place in the slagline refractories are due to the MgO-C reaction as well as the formation of liquid phases from impurity oxides. In addition, the decrease in the system pressure during steel refining makes the MgO-C reaction take place at the steel refining temperatures. This reduces the refractory’s resistance to corrosion. This is a serious problem for both the magnesia-carbon and dolomite-carbon refractories. The studies of the reactions between the slagline refractories and the different slag compositions showed that slags rich in iron oxide lead mostly to the oxidation of carbon/graphite in the carbon-containing refractories. This leads to an increased porosity and wettability and therefore an enhanced penetration of slag into the refractory structure. If the slag contains high contents of alumina and or silica (such as the steel refining slag), reactions between the slag components and the dolomite-carbon refractory are promoted. This leads to the formation of low-temperature melting phases such as calcium-aluminates and silicates. The state of these reaction products during steel refining leads to an accelerated wear of the dolomite-carbon refractory. The main products of the reactions between the magnesia-carbon refractory and the steel refining slag are MgAl2O4 spinels, and calcium-aluminates, and silicates. Due to the good refractory properties of MgAl2O4 spinels, the slag corrosion resistance of the magnesiacarbon refractory is promoted.
Resumo:
A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions. The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and indentify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered. The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20 % without sacrificing ventilation efficiency or thermal comfort. Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught.
Resumo:
This paper focuses on the study of cascade heat pump systems in combination with solar thermal for the production of hot water and space heating in single family houses with relatively high heating demand. The system concept was developed by Ratiotherm GmbH and simulated with TRNSYS 17. The basic cascade system uses the heat pump and solar collectors in parallel operation while a further development is the inclusion of an intermediate store that enables the possibility of serial/parallel operation and the use of low temperature solar heat. Parametric studies in terms of compressor size, refrigerant pair and size of intermediate heat exchanger were carried out for the optimization of the basic system. The system configurations were simulated for the complete year and compared to a reference of a solar thermal system combined with an air source heat pump. The results show ~13% savings in electricity use for all three cascade systems compared to the reference. However, the complexity of the systems is different and thus higher capital costs are expected.
Resumo:
A eficiência da técnica de cultura de anteras, em escala comercial, ainda pode ser considerada baixa quando medida em número de plantas duplo-haplóides férteis obtidas para cada antera estabelecida in vitro. Dessa forma, o presente trabalho é pioneiro no estudo detalhado da embriogênese in vitro do micrósporo e do grão de pólen de cevada (Hordeum vulgare L. ssp. vulgare). Com o objetivo de contribuir para o aperfeiçoamento da técnica de cultura de anteras foi analisada a embriogênese, com especial ênfase na etapa da indução, através de análises citológicas e histológicas de anteras cultivadas in vitro. Foram analisadas uma cultivar brasileira de cevada, em comparação com linhagens de duas outras cultivares brasileiras, que foram selecionadas, por seleção divergente para maior ou para menor resposta na indução da rota embriogênica e, respectivamente, para menor ou para maior capacidade de regenerar plântulas verdes. Somente foram estabelecidas em cultivo in vitro as anteras que apresentaram micrósporos e pólens jovens, das linhagens selecionadas da cultivar A-05 (S3A22 e S3A23), e da cultivar BR-2(S3B63 e, apenas na cultura de anteras, S3B61), bem como da cultivar MN-599 (nãoselecionada). Para as análises histológicas, foram fixadas, a cada dois dias, duas anteras, correspondentes a cada fileira da mesma espiga, após o início do cultivo in vitro. As anteras em cultivo e respectivas estruturas multicelulares foram fixadas em FAA 50%, desidratadas em série etílica e incluídas em hidroxietilmetacrilato. Os blocos de resina polimerizada foram secionados longitudinalmente com 3 mm de espessura. Para as análises citológicas foram fixadas, de cada espiga recém-coletada, três espiguetas sendo uma da base, outra do meio e outra do ápice. Após o pré-tratamento à baixa temperatura (5 °C), porém antes do cultivo in vitro, foram fixadas três anteras (amostras utilizadas como controles). A cada três dias, durante o cultivo, três anteras foram fixadas (até 18 dias). As anteras em cultivo e estruturas multicelulares foram fixadas em Farmer e FAA 50%, transferidas após 24 horas para etanol 70%. Na cultura in vitro das anteras houve diferenças entre uma das linhagens da cultivar A-05 em relação a cultivar MN- 599, na produção inicial de estruturas embriogênicas, diferença que desapareceu na produção total. Entretanto, houve diferenças na formação dos xiii embriões: a cv.MN-599 formou embriões bem diferenciados ao passo que a linhagem S3A22 produziu um número aparentemente menor, sendo que os embriões não eram bem diferenciados. A linhagem S3B63 não apresentou embriões até o final da análise histológica. Considerando que a amostra dessa linhagem, mantida em cultura, formou plantas verdes, pode-se propor que a formação de embriões deve ocorrer posteriormente ao desenvolvimento da cv.MN-599. Cabe destacar que houve diferenças significativas entre as cultivares A-05 e BR-2 quanto à regeneração de plântulas verdes. Esses resultados indicam ter havido maior eficiência da seleção em relação à etapa da regeneração. Com relação às categorias classificatórias dos micrósporos e grãos de pólen, constatou-se que desde o início da análise histológica (2o dia de cultivo in vitro) até o final (34o dia), foram observados micrósporos, o mesmo tendo sido observado na análise citológica. Os grãos de pólen multinucleados ocorreram praticamente em todo o período de cultivo in vitro, em ambas análises; não ocorrendo nos controles da citologia (antes do cultivo); os multinucleados foram observados a partir do 3o dia, enquanto que os multicelulares a partir do 4o dia de cultivo. As estruturas multicelulares foram observadas a partir do 8o dia. A quantidade e o tamanho das estruturas multicelulares foram variáveis ao longo da análise histológica, sendo que do 14o ao 20o dia foram encontradas as de maiores dimensões, resultantes da proliferação celular por mitoses sucessivas. A partir do 22o dia (cultivar MN- 599), a ocorrência de estruturas multicelulares no interior dos lóculos da antera diminuiu, predominando o processo de proliferação externo às anteras. Para as linhagens, a partir do 18o dia foram observadas estruturas multicelulares liberadas das anteras. A análise das estruturas multicelulares permitiu classificá-las em quatro categorias: 1. SFD: Sem forma definida; 2. MAC: meristema apical caulinar; 3. MAR: meristema apical radical embrionário adventício; e 4. Embriões. As estruturas amorfas apareceram em maior número, quando comparadas com as outras categorias. Em síntese: as linhagens selecionadas e a cultivar diferiram não apenas no tempo necessário para a formação dos embriões, mas também no desenvolvimento dos mesmos, que foi mais diferenciado na cultivar MN-599, porém sendo observados mais cedo na linhagem S3A22 e S3A23, do que na cultivar MN-599.
Resumo:
SILVA, J. S. P. Estudo das características físico-químicas e biológicas pela adesão de osteoblastos em superfícies de titânio modificadas pela nitretação em plasma. 2008. 119 f. Tese (Doutorado) - Faculdade de Medicina, Universidade de São Paulo. São Paulo, 2008.
Resumo:
Oil well cementing materials consist of slurries of Special class Portland cement dispersed in water. Admixtures can be used to provide the necessary fluidity, so the material can be efficiently pumped down as well as penetrate porous rocks with controlled filter loss. Construction admixtures can be used to modify the properties of oil well cements provided they can withstand and hold their properties at the higher than ambient temperatures usually encountered in oil fields. In civil construction, superplasticizer play the role of dispersants that reduce the facto r of water cement improve mechanical properties and fluidity of the cement, whereas anti-segregation agents improve the workability of the slurry. In the present study, oil well cement slurries were produced adding both a dispersant and an anti-segregation agent conventionally used in Portland CPII-Z-32 RS cement aiming at materials for primary cementing and squeeze operations. Three basic aspects were evaluated: fluidity, filter loss and the synergetic effect of the admixtures at two temperatures, i.e., 27°C and 56°C, following API RP 10B practical recommendations. The slurries were prepared using admixture concentrations varying from 2.60 Kgf/m3 (0.02 gallft3) to 5.82 Kgf/m3 (0.045 galJft3) BWOC. The density of the slurries was set to 1.89 g/cm3 (15.8 Ib/gal). 0.30 to 0.60% BWOC of a CMC-based anti-segregation agent was added to the cement to control the filter loss. The results showed that the addition of anti-segregation at concentrations above 0.55% by weight of cement resulted in the increased viscosity of the folders in temperatures evaluated. The increasing the temperature of the tests led to a reduction in the performance of anti-segregation. At concentrations of 5.20 kgf/m3 (0,040 gallft3) and 5.82 Kgf/m3 (0,045 gal/ft 3) observed a better performance of the properties evaluated in the proposed system. At low temperature was observed instability in the readings of rheology for all concentrations of anti-segregation. Contents that increasing the concentration of anti¬-segregation is limited concentrations greater than 0.55 % BWOC of the CMC in temperature analyzed. The use of the system with CMC promoted a good performance against the properties evaluated. The principal function of anti¬-segregation was optimized with increasing concentration of superplasticizer, at temperatures above the 2rC. The study of the behaviour of systemic additives, resulting in slurries of cement, which can be optimized face studies of other intrinsic properties in oil fields
Resumo:
The research and development of nanostructured materials have been growing significantly in the last years. These materials have properties that were significantly modified as compared to conventional materials due to the extremely small dimensions of the crystallites. The tantalum carbide (TaC) is an extremely hard material that has high hardness, high melting point, high chemical stability, good resistance to chemical attack and thermal shock and excellent resistance to oxidation and corrosion. The Compounds of Tantalum impregnated with copper also have excellent dielectric and magnetic properties. Therefore, this study aimed to obtain TaC and mixed tantalum oxide and nanostructured copper from the precursor of tris (oxalate) hydrate ammonium oxitantalato, through gas-solid reaction and solid-solid respectively at low temperature (1000 ° C) and short reaction time. The materials obtained were characterized by X-ray diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), Spectroscopy X-Ray Fluorescence (XRF), infrared spectroscopy (IR), thermogravimetric (TG), thermal analysis (DTA) and BET. Through the XRD analyses and the Reitiveld refinement of the TaC with S = 1.1584, we observed the formation of pure tantalum carbide and cubic structure with average crystallite size on the order of 12.5 nanometers. From the synthesis made of mixed oxide of tantalum and copper were formed two distinct phases: CuTa10O26 and Ta2O5, although the latter has been formed in lesser amounts
Resumo:
The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts
Resumo:
The production of waste from urban and industrial activities is one of the factors of environmental contamination and has aroused attention of the scientific community, in the sense of its reuse. On the other hand, the city of Salvador/Ba, with approximately 262 channels, responsible for storm water runoff, produces every year, by the intervention of cleaning and clearing channels, a significant volume of sediments (dredged mud), and thus an appropriate methodology for their final destination. This study aims to assess the influence of incorporation of these tailings in arrays of clay for production of interlocked block ceramic, also known as ceramic paver. All the raw materials from the metropolitan region of Salvador (RMS) were characterized by x-ray fluorescence, x-ray diffraction, thermal analysis (TG and TDA), particle size analysis and dilatometry. With the use of statistical experimental planning technique, ternary diagram was defined in the study region and the analyzed formulations. The specimens were prepared with dimensions of 60x20x5mm³, by uniaxial pressing of 30 MPa and after sintering at temperatures of 900°, 1000º and 1100ºC the technological properties were evaluated: linear shrinkage, water absorption, apparent porosity, apparent specifies mass, flexural rupture and module. For the uniaxial compression strength used cylindrical probe body with Ø 50 mm. The standard mass (MP) was prepared with 90% by weight of clay and 10% by weight of Channel sediment (SCP), not being verified significant variations in the properties of the final product. With the incorporation of 10% by weight of manganese residue (PFM) and 10% by weight of the Ceramic waste (RCB) in the mass default, in addition to adjusting the plasticity due to less waste clay content, provided increased linear firing shrinkage, due the significant concentration of K2O, forming liquid phase at low temperature, contributing to decreased porosity and mechanical resistance, being 92,5 MPa maximum compressive strength verified. After extract test leachate and soluble, the piece containing 10% of the PFM, was classified as non-hazardous and inert material according to NBR10004/04 ABNT. The results showed the feasibility on using waste, SCP, RCB and PFM clay mass, at temperatures above 900ºC, paver ceramic production, according to the specifications of the technical standards, so that to exceed the 10% of the PFM, it becomes imperative to conduct studies of environmental impacts
Resumo:
Ceramic composites produced with polymerics precursors have been studied for many years, due to the facility of obtaining a complex shape, at low temperature and reduces cost. The main objective of this work is to study the process of sintering of composites of ceramic base consisting of Al2O3 and silicates, reinforced for NbC, through the technique of processing AFCOP, as well as the influence of the addition of LZSA, ICZ and Al as materials infiltration in the physical and mechanical properties of the ceramic composite. Were produced ceramic matrix composites based SiCxOy e Al2O3 reinforced with NbC, by hidrosilylation reaction between D4Vi and D1107 mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. The specimens produced were pyrolised at 1200, 1250 and 1400°C and infiltred with Al, ICZ and LZSA, respectively. Density, porosity, flexural mechanical strength and fracture surface by scanning electron microscopy were evaluated. The microstructure of the composites was investigated by X-ray diffraction to identify the presence of crystalline phases. The composites presented apparent porosity varying of 31 up to 49% and mechanical flexural strength of 14 up to 34 MPa. The infiltration process improviment of the densification and reduction of the porosity, as well as increased the values of mechanical flexural strength. The obtained phases had been identified as being Al3Nb, NbSi2, Nb5S3, Nb3Si and NbC. The samples that were submitted the infiltration process presented a layer next surface with reduced pores number in relation to the total volume
Resumo:
Steam injection is the most used thermal recovery method of oil nowadays because of the high degree of development of the technique that allows high recovery factors. However, injection of superheated steam into the reservoir affects the entire structure of the well, including the cemented layer that presents a retrogression of compressive strength and increases the permeability due to formation of more crystalline and denser phases at temperatures above 110 °C. These changes result in failures in the cement that favor the entrance of formation fluids into the annulus space resulting in unsafe operations and restrictions in the economic life of the well. But the strength retrogression can be prevented by partial replacement of cement by silica-based materials that reduce the CaO/SiO2 ratio of cement slurries changing the trajectory of the reactions, converting those deleterious phases in phases with satisfactory mechanical strength and permeability. The aim of this study was to evaluate the behavior of a ceramic waste material rich in silica in partial and total substitution of a mineral additive used to fight the strength retrogression of cement slurries subjected to high temperatures. The evaluation was made by compression, X-ray diffraction (XRD) and thermogravimetry (TG/DTG). The samples were submitted to a cycle of low temperature (38 °C) for 28 days and a cycle of low temperature followed by exposure to 280 ºC and 1000 psi by 3 days. The results showed that slurries with additions of up to 30% of the waste material are not enough to prevent the strength retrogression, while slurries with additions of the waste material combined with silica flour in various proportions produced hydrated products of low Ca/Si ratios that maintained the compressive strength at satisfactory levels