923 resultados para low temperature caustic reaction
Resumo:
Poly(methyl)methacrylate was made photoconducting by molecular doping and the photoconductivity was investigated using modulated photocurrent technique . Low-temperature current-voltage measurements showed that the transport mechanism was thermally activated hopping. An experimental investigation of the photoconductivity action spectrum along with theoretical calculation enabled an estimation of the diffusion coefficient of the material. The presence of states with a distribution of lifetimes could be understood from the frequency response of the photocurrent . The photocurrent was due to the field-assisted dissociation of these states.
Resumo:
Polymers exhibit low electron density and they are radiolucent. Polymers can be made radiopaque by different techniques. We report a method for the preparation of radiopaque material from natural rubber (NR). NR in its latex form was iodinated. Iodinated natural rubber (INR) was characterized by using UV, thermo gravimetric analysis (TGA), and X-ray images. INR was compounded at high and low temperatures and its physical properties were measured. The low temperature cured samples show good radiopacity and conductivity. The optical density of low temperature cured samples was measured.
Resumo:
In recent years considerable advances have been achieved in the study of the surface structure and mechanism of action of environmentally benign heterogeneous catalysts. The study entitled as surface properties and catalytic activity of manganese ferrospinels. In the present study we have prepared manganese ferrospinels of general formula Mn(1-x)BxFe2O4 via low temperature controlled co-precipation method. The study employed low temperature co-precipitation method for the preparation ofMn(1-x)BxFe2O4 specimens, where B is a metal cation such as Cr,Co, Ni,Cu and Zn. The catalytic activities of the systems were investigated for liquid-phase benzoylation of aromatic compounds and phenol hydroxylation and for vapour-phase reactions such as aniline alkylation, phenol methylation and ODH of ethylbenzene. The different series of manganese ferrites are proved to be excellent catalysts for various industrially important reactions such as Friedel-crafts benzoylation of aromatic compounds, methylation of aniline and phenol, hydroxylation of phenol and oxidative dehydrogenation of ethylbenzene. Due to the tightening of the environmental regulations, production of diphenols from phenol hydroxylation and reduction of phenolic pollutants in waste waters using these catalysts can be a promising approach because it demands only simple techniques and produce little environmental pollution.
Resumo:
The propagation of pulse waves in coplanar waveguides (CPWs) is investigated, and these CPWs are assumed to be fabricated on a single -layer low- temperature co-fired ceramic (LTCC) substrate. The input pulse wave can be a Gaussian pulse or a sinusoldally modulated Gaussian pulse. Based on the standard Galerkin 's method in the spectral domain, combined with fast Fourier transform (FFT), the pulse waveform and delay in CPWs are demonstrated and compared for a second plate, oriented orthogonally to the primary planar element, thus producing a crossed planar monopole (CPM), which is simpler to produce and has lower cost than a conical monopole. In this paper, further measurements have been made on this element
Resumo:
CoMo/gama-Al2O3 catalysts for hydrodesulphurisation activity were prepared by making use of the molecular designed dispersion (MDD) method. Molybdenum and cobalt pyrrolidine-N-carbodithioate (Pydtc) complexes were used for the incorporation of metals on the support. The catalysts were characterized by elemental analysis, low temperature oxygen chemisorption, temperature programmed reduction (TPR) and laser Raman spectroscopy. The hydrodesulphurisation activity of all the catalysts were carried out and results were compared with those of the catalysts prepared through the conventional method. Higher molybdenum dispersion, smaller molybdenum clusters, lower reduction temperature of catalyst and better hydrodesulphurisation activity were observed for the catalysts prepared through the MDD method
Resumo:
The study shows that standard plastics like polypropylene and high density polyethylene can be reinforced by adding nylon short fibres. Compared to the conventional glass reinforced thermoplastics this novel class of reinforced thermoplastics has the major advantage of recyclability. Hence such composites represent a new spectrum of recyclable polymer composites. The fibre length and fibre diameter used for reinforcement are critical parameters While there is a critical fibre length below which no effective reinforcement takes place, the reinforcement improves when the fibre diameter decreases due to increased surface area.While the fibres alone give moderate reinforcement, chemical modification of the matrix can further improve the strength and modulus of the composites. Maleic anhydride grafting in presence of styrene was found to be the most efficient chemical modification. While the fibre addition enhances the viscosity of the melt at lower shear rates, the enhancement at higher shear rate is only marginal. This shows that processing of the composite can be done in a similar way to that of the matrix polymer in high shear operations such as injection moulding. Another significant observation is the decrease in melt viscosity of the composite upon grafting. Thus chemical modification of matrix makes processing of the composite easier in addition to improving the mechanical load bearing capacity.For the development of a useful short fibre composite, selection of proper materials, optimum design with regard to the particular product and choosing proper processing parameters are most essential. Since there is a co-influence of many parameters, analytical solutions are difficult. Hence for selecting proper processing parameters 'rnold flow' software was utilized. The orientation of the fibres, mechanical properties, temperature profile, shrinkage, fill time etc. were determined using the software.Another interesting feature of the nylon fibre/PP and nylon fibre/HDPE composites is their thermal behaviour. Both nylon and PP degrade at the same temperature in single steps and hence the thermal degradation behaviour of the composites is also being predictable. It is observed that the thermal behaviour of the matrix or reinforcement does not affect each other. Almost similar behaviour is observed in the case of nylon fibre/HDPE composites. Another equally significant factor is the nucleating effect of nylon fibre when the composite melt cools down. In the presence of the fibre the onset of crystallization occurs at slightly higher temperature.When the matrix is modified by grafting, the onset of crystallization occurs at still higher temperature. Hence it may be calculated that one reason for the improvement in mechanical behaviour of the composite is the difference in crystallization behaviour of the matrix in presence of the fibre.As mentioned earlier, a major advantage of these composites is their recyclability. Two basic approaches may be employed for recycling namely, low temperature recycling and high temperature recycling. In the low temperature recycling, the recycling is done at a temperature above the melting point of the matrix, but below that of the fibres while in the high temperature route. the recycling is done at a temperature above the melting points of both matrix and fibre. The former is particularly interesting in that the recycled material has equal or even better mechanical properties compared to the initial product. This is possible because the orientation of the fibre can improve with successive recycling. Hence such recycled composites can be used for the same applications for which the original composite was developed. In high temperature recycling, the composite is converted into a blend and hence the properties will be inferior to that of the original composite, but will be higher than that of the matrix material alone.
Resumo:
The present study describes the surface properties and catalytic activities of ferrospinels containing Co, Ni and Cu prepared by the low temperature route. Various physico-chemical methods have been adopted to characterise the systems. The reactions carried out are the Friedel-Crafts benzoylation of aromatics and the cyclohexanol decomposition. We have attempted the sulphate modification of the ferrites and have studied the surface and catalytic properties of the sulphated analogues.The work is presented in six chapters, the last chapter giving the summary and conclusions of the results presented earlier. Our samples prove as potential catalysts for the benzoylation of aromatics , for which truly heterogeneous catalysts are rare. Again , the materials show remarkable dehydration/dehydrogenation activities during cyclohexanol decomposition. There is plenty of scope for research in this field, especially in the development of environmentally benign catalysts for acylation reactions.
Resumo:
The catalyst compositions of the Zn1−xCOxFe2O4 (x= 0, 0.2, 0.5, 0.8 and 1.0) spiel series possessing ‘x’ values, x less than or equal to 0.5, are unique for selective N-monomethylation of aniline using methanol as the alkylating agent. Since dimethyl carbonate (DMC) is another potential non-toxic alkylating agent, alkylation of aniline was investigated over various Zn–Co ferrites using DMC as the alkylating agent. The merits and demerits of the two alkylating agents are compared. Catalytic activity followed a similar trend with respect to the composition of the ferrospinel systems. DMC is active at comparatively low temperature, where methanol shows only mild activity. However, on the selectivity basis, DMC as an alkylating agent could not compete with methanol, since the former gave appreciable amounts of N,N-dimethylaniline (NNDMA) even at low temperature where methanol gave nearly 99% N-methylaniline (NMA) selectivity. As in the case of methanol, DMC also did not give any C-alkylated products.
Resumo:
Magnetism and magnetic materials have been an ever-attractive subject area for engineers and scientists alike because of its versatility in finding applications in useful devices. They find applications in a host of devices ranging from rudimentary devices like loud speakers to sophisticated gadgets like waveguides and Magnetic Random Access Memories (MRAM).The one and only material in the realm of magnetism that has been at the centre stage of applications is ferrites and in that spinel ferrites received the lions share as far as practical applications are concerned.It has been the endeavour of scientists and engineers to remove obsolescence and improve upon the existing so as to save energy and integrate in to various other systems. This has been the hallmark of material scientists and this has led to new materials and new technologies.In the field of ferrites too there has been considerable interest to devise new materials based on iron oxides and other compounds. This means synthesising ultra fine particles and tuning its properties to device new materials. There are various preparation techniques ranging from top- down to bottom-up approaches. This includes synthesising at molecular level, self assembling,gas based condensation. Iow temperature eo-precipitation, solgel process and high energy ball milling. Among these methods sol-gel process allows good control of the properties of ceramic materials. The advantage of this method includes processing at low temperature. mixing at the molecular level and fabrication of novel materials for various devices.Composites are materials. which combine the good qualities of one or more components. They can be prepared in situ or by mechanical means by the incorporation of fine particles in appropriate matrixes. The size of the magnetic powders as well as the nature of matrix affect the processability and other physical properties of the final product. These plastic/rubber magnets can in turn be useful for various applications in different devices. In applications involving ferrites at high frequencies, it is essential that the material possesses an appropriate dielectric permittivity and suitable magnetic permeability. This can be achieved by synthesizing rubber ferrite composites (RFC's). RFCs are very useful materials for microwave absorptions. Hence the synthesis of ferrites in the nanoregirne.investigations on their size effects on the structural, magnetic, and electrical properties and the incorporation of these ferrites into polymer matrixes assume significance.In the present study, nano particles of NiFe204, Li(!5Fe2S04 and Col-e-O, are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFel04 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X - band are also conducted.
Resumo:
Measurements of dc conductivity and dielectric constant show that deuteration causes an upward shift of the high temperature phase transition point from 186.5 to 191°C and a downward shift of the low temperature transition point from 10 to -1.5°C in LiNH4SO4. Mechanisms of phase transitions and of electrical transport in the crystal are discussed.
Resumo:
This thesis has focused on the synthesis and analysis of some important phosphors (nano, bulk and thin film) for display applications. ACTFEL device with SrS:Cu as active layer was also fabricated.Three bulk phosphors: SrS:Cu,CI; SrS:Dy,Cl; and SrS:Dy,Cu,Cl were synthesized and their structural, optical and electrical properties were investigated. Special emphasis was given to, the analysis of the role of defects and charge compensating centers, on the structural changes of the host and hence the luminance. A new model describing the sensitizing behaviour of Cu in SrS:Dy,Cu,Cl two component phosphor was introduced. It was also found that addition of NH4CI as flux in SrS:Cu caused tremendous improvement in the structural and luminescence properties.A novel technique for ACTFEL phosphor deposition at low temperature was introduced. Polycrystalline films of SrS:Cu,F were synthesized at low temperature by concomitant evaporation of host and dopant by electron beam evaporation and thermal evaporatin methods.Copper doped strontium sulphide nanophosphor was synthesized for the first time. Improvement in the luminescence properties was observed in the nanophosphor with respect to it' s bulk counterpart.
Resumo:
The present thesis can be divided into three areas:1) the fabrication of a low temperature photo-luminescence and photoconductivity measuring unit 2) photo-luminescence in the chalcopyrite CulnSez and CulnS2 system for defect and composition analysis and 3) photo-luminescence and photo-conductivity of In:JS3. This thesis shows that photo-luminescence is one of most essential semiconductor characterization tool for a scientific group working on photovoltaics. Tools which can be robust, non-destructive, requiring minimal sample preparation for analysis and most informative of the device applications are sought after by industries and this thesis is towards establishing photo-luminescence as "THE" tool for semiconductor characterization. The possible application of photo-luminescence as a tool for compositional and quality analysis of semiconductor thin films has been worked upon by this thesis. Photo-conductivity complement photo-luminescence and together they provide all the information required for the fabrication of an opto-electronic device.
Resumo:
The density of states and the low temperature specific heat of higb-Tc superconductors are calculated in a functional integral formalism using the slave boson technique. The manybody calculation in a saddle point approximation shows that the Iow energy sector is dominated by 3 single band. The calculated values of density of states are in good agreement with experimental results.
Resumo:
Nanosized ZnFe2O4 particles containing traces of a-Fe2O3 by intent were produced by low temperature chemical coprecipitation methods. These particles were subjected to high-energy ball milling. These were then characterised using X-ray diffraction, magnetisation and dielectric studies. The effect of milling on zinc ferrite particles have been studied with a view to ascertaining the anomalous behaviour of these materials in the nanoregime. X-ray diffraction and magnetisation studies carried out show that these particles are associated with strains and it is the surface effects that contribute to the magnetisation. Hematite percentage, probably due to decomposition of zinc ferrite, increases with milling. Dielectric behaviour of these particles is due to interfacial polarisation as proposed by Koops. Also the defects caused by the milling produce traps in the surface layer contributes to dielectric permittivity via spin polarised electron tunnelling between grains. The ionic mechanism is enhanced in dielectrics with the rise in temperature which results in the increase of dielectric permittivity with temperature.