801 resultados para lithium tantalite crystal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new crystalline compound, Li2PO2N, was synthesized using high temperature solid state methods starting with a stoichiometric mixture of Li2O, P2O5, and P3N5. Its crystal structure was determined ab initio from powder X-ray diffraction. The compound crystallizes in the orthorhombic space group Cmc2(1) (# 36) with lattice constants a = 9.0692(4) angstrom, b = 53999(2) angstrom, and c = 4.6856(2) angstrom. The crystal structure of SD-Li2PO2N consists of parallel arrangements of anionic chains formed of corner sharing (PO2N2) tetrahedra. The chains are held together by Li+ cations. The structure of the synthesized material is similar to that predicted by Du and Holzwarth on the basis of first principles calculations (Phys. Rev. B 81,184106 (2010)). The compound is chemically and structurally stable in air up to 600 degrees C and in vacuum up to 1050 degrees C. The Arrhenius activation energy of SD-Li2PO2N in pressed pellet form was determined from electrochemical impedance spectroscopy measurements to be 0.6 eV, comparable to that of the glassy electrolyte LiPON developed at Oak Ridge National Laboratory. The minimum activation energies for Li ion vacancy and interstitial migrations are computed to be 0.4 eV and 0.8 eV, respectively. First principles calculations estimate the band gap of SD-Li2PO2N to be larger than 6 eV. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1x1) electrode and covered by Au(60 nm)@SlO(2) core shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+),V(+center dot) and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of similar to 3 x 10(5), and up to 9 x 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)- catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces.