951 resultados para liquid crystal display
Resumo:
1,3-Dimethylimidazolium-2-carboxylate is formed in good yield, rather than the anticipated organic salt, 1,3-dimethylimidazolium methyl carbonate, as the reaction product resulting from both N-alkylation and C-carboxylation of 1-methylimidazole with dimethyl carbonate; the crystal structure of the zwitterion exhibits pi-stacked rings and two-dimensional sheets constructed by hydrogen-bonds from imidazolium-ring hydrogens to the carboxylate group.
Resumo:
The alkali-metal salts of meta-substituted benzoic acids exhibit a smectic A mesophase at high temperatures. These compounds are examples of liquid crystals without terminal alkyl chains. The influence of the metal ion and of the type of substituents on the transition temperatures is discussed. Compounds with the substituent in the ortho- and para-positions are non-mesomorphic. The crystal structures of the compounds Rb(C7H4ClO2)(C7H4ClO2H), Na(C7H4IO2)(H2O), K(C7H4ClO2)(C7H4ClO2H) and Rb(C7H4BrO2)(C7H4BrO2H) have been determined by X-ray crystallography. These compounds possess a layerlike structure in the solid state. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Resumo:
N-(3-Halogenopropyl)-4-phenylazetidin-2-ones undergo amination in liquid ammonia followed by transamidative ring expansion to give the eight-membered 4-phenyl -1,5-diazacyclooctan-2-one in excellent yield. Ring expansion of the amines in liquid ammonia is found to be much more effective than in hydrocarbon solvents. Formation of 7-, 8-, and 9-membered azalactams from the requisite -halogenoalkyl--lactams is an excellent synthetic process, though it is not applicable to 10membered rings. In the cases of rings of 13-, 15- and 17-members, although amination and apparent expansion takes place, the large rings appear not to be stable to ammonia and the final products are acyclic amides. N-[4-Halogenobut-2(Z)-enyl]-4-phenylazetidin-2-one satisfactorily forms a 9-membered (Z)-olefinic azalactam, but the (E)-isomer gives an acyclic amino amide. By using alkyl-substituted -lactam side-chains, C-substituted medium rings can be obtained; the relative instability of N-acyl -lactams to ammonia, however, leads to acylamino amides rather than expanded rings.Employing ethylamine in place of ammonia, it is shown that N-ethylated azalactams are formed satisfactorily, and using allylamine, N-allyl medium rings capable of further elaboration are obtained. The chemistry of these systems is discussed. Using transamidation in liquid ammonia, a short synthesis of the 9-membered spermidine alkaloid (±)-dihydroperiphylline is reported. Synthesis of key intermediates, whose transformation into the 13-membered alkaloids of the celabenzine group has already been effected, has been carried out.X-Ray single-crystal structure determinations for 4-phenyl-1,5-diazacyclononan-2-one, trans-4-phenyl-8-methyl-1,5-diazacyclooctan-2-one and (Z)-4-phenyl-1,5-diazacyclonon-7-en-2-one are reported, and comment is made on certain conformational features.
Resumo:
The surface properties of the jellium model have been investigated by large supercell computations in the density functional theory-local spin-density (DFT-LSD) approach for planar slabs with up to 1000 electrons. A wide interval of densities has been explored, extending into the stability range of the Wigner crystal. Most computations have been carried out on nominally paramagnetic samples with an equal number of spin-up and spin-down electrons. The results show that within DFT-LSD spontaneous spin polarization and charge localization start nearly simultaneously at the surface for r(s) similar to 20, then, with decreasing density, they progress toward the center of the slab. Electrons are fully localized and spin polarized at r(s) = 30. At this density the charge distribution is the superposition of disjoint charge blobs, each corresponding to one electron. The distribution of blobs displays both regularities and disorder, the first being represented by well-defined planes and simple in-plane geometries, and the latter by a variety of surface defects. The surface energy, surface dipole, electric polarisability, and magnetization pattern have been determined as a function of density. All these quantities display characteristic anomalies at the density of the localization transition. The analysis of the low-frequency electric conductivity shows that in the fluid paramagnetic regime the in-plane current preferentially flows in the central region of the slab and the two spin channels are equally conducting. In the charge localized, spin-polarized regime, conductivity is primarily a surface effect, and an apparent asymmetry is observed in the two spin currents.
Resumo:
The solid-state polymorphism of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], has been investigated via low-temperature and high-pressure crystallisation experiments. The samples have been characterised by single-crystal X-ray diffraction, optical microscopy and Raman spectroscopy. The solid-state phase behaviour of the compound is confirmed and clarified with respect to previous phase diagrams. The structures of the previously reported gamma-form, which essentially exhibits a G'T cation conformation, as well as those of the elusive beta- and alpha-forms, are reported. Crystals of the beta-phase are twinned and the structure is heavily disordered; the cation conformation in this form is predominantly TT, though significant contributions from other less frequently encountered conformers are also observed at low temperature and high pressure. The cation conformation in the alpha-form is GT; the presence of the G'T conformer at 193 K in this phase can be eliminated on cooling to 100 K. Whilst X-ray structural data are overall in good agreement with previous interpretations based on Raman and NMR studies, they also reveal a more subtle interplay of intermolecular interactions, which give rise to a wider range of conformers than previously considered.
Resumo:
The drive towards cleaner industrial processes has led to the development of room temperature ionic liquids (RTIL) as environmentally friendly solvents. They comprise solely of ions which are liquid at room temperature and with over one million simple RTIL alone it is important to characterize their physical properties using minimal sample volumes. Here we present a dual Quartz Crystal Microbalance (QCM) which allows separate determination of viscosity and density using a total sample volume of only 240 mu L. Liquid traps were fabricated on the sensing area of one QCM using SU-8 10 polymer with a second QCM having a flat surface. Changes in the resonant frequencies were used to extract separate values for viscosity and density. Measurements of a range of pure RTIL with minimal water content have been made on five different trap designs. The best agreement with measurements from the larger volume techniques was obtained for trap widths of around 50 pm thus opening up the possibility of integration into lab-on-a-chip systems.
Resumo:
Air- and water-stable 1-alkyl-3-methylimidazolium tetrafluoroborate salts with the general formula [C-mim][BF] (n = 0-18) have been prepared by metathesis from the corresponding chloride or bromide salts. The salts have been characterised by H NMR and IR spectroscopy, microanalysis, polarising optical microscopy and differential scanning calorimetry. Those with short alkyl chains (n = 2-10) are isotropic ionic liquids at room temperature and exhibit a wide liquid range, whereas the longer chain analogues are low melting mesomorphic crystalline solids which display an enantiotropic smectic A mesophase. The thermal range of the mesophase increases with increasing chain length and in the case of the longest chain salt prepared, [C-mim][BF], the mesophase range is ca. 150°C.
Resumo:
We have resolved the solid-liquid phase transition of carbon at pressures around 150GPa. High-pressure samples of different temperatures were created by laser-driven shock compression of graphite and varying the initial density from 1.30g/cm3 to 2.25g/cm3. In this way, temperatures from 5700K to 14,500K could be achieved for relatively constant pressure according to hydrodynamic simulations. From measuring the elastic X-ray scattering intensity of vanadium K-alpha radiation at 4.95keVat a scattering angle of 126°, which is very sensitive to the solid-liquid transition, we can determine whether the sample had transitioned to the fluid phase. We find that samples of initial density 1.3g/cm3 and 1.85g/cm3 are liquid in the compressed states, whereas samples close to the ideal graphite crystal density of 2.25g/cm3 remain solid, probably in a diamond-like state.
Resumo:
RATIONALE: Epithelial remodelling in asthma is characterised by goblet cell hyperplasia and mucus hypersecretion for which no therapies exist. Differentiated bronchial air-liquid interface cultures from asthmatic children display high goblet cell numbers. Epidermal growth factor and its receptor have been implicated in goblet cell hyperplasia.
OBJECTIVES: We hypothesised that EGF removal or tyrphostin AG1478 treatment of differentiating air-liquid interface cultures from asthmatic children would result in a reduction of epithelial goblet cells and mucus secretion.
METHODS: In Aim 1 primary bronchial epithelial cells from non-asthmatic (n = 5) and asthmatic (n = 5) children were differentiated under EGF-positive (10ng/ml EGF) and EGF-negative culture conditions for 28 days. In Aim 2, cultures from a further group of asthmatic children (n = 5) were grown under tyrphostin AG1478, a tyrosine kinase inhibitor, conditions. All cultures were analysed for epithelial resistance, markers of differentiation using immunocytochemistry, ELISA for MUC5AC mucin secretion and qPCR for MUC5AC mRNA.
RESULTS: In cultures from asthmatic children the goblet cell number was reduced in the EGF negative group (p = 0.01). Tyrphostin AG1478 treatment of cultures from asthmatic children had significant reductions in goblet cells at 0.2μg/ml (p = 0.03) and 2μg/ml (p = 0.003) as well as mucus secretion at 2μg/ml (p = 0.04).
CONCLUSIONS: We have shown in this preliminary study that through EGF removal and tyrphostin AG1478 treatment the goblet cell number and mucus hypersecretion in differentiating air-liquid interface cultures from asthmatic children is significantly reduced. This further highlights the epidermal growth factor receptor as a potential therapeutic target to inhibit goblet cell hyperplasia and mucus hypersecretion in asthma.
Resumo:
Purple bronze Li0.9Mo6O17 has attracted researchers for its low dimensionality and corresponding properties. Although it has been studied for nearly two decades, there are still some unsolved puzzles with this unique material. Single crystals of Li0.9Mo6O17 were grown using the temperature gradient flux technique in this research. The crystal growth was optimized by experimenting different conditions and good quality crystals were obtained. X-ray diffraction results have confirmed the right phase of the crystals. Resistivity measurements and magnetic susceptibility measurements were carried out, and anomalous electronic behaviors were found. All of the samples showed the metal-insulator transition near 20K, followed by behavior that differs from sample to sample: either superconducting, metallic or insulating behavior was observed below 2K. Li0.9Mo6O17 was considered as a quasi-one-dimensional crystal and also a superconducting crystal, which implies a dimensional crossover may occur at the metal-insulator transition. A two-band scenario of the Luttinger liquid model was used to fit the resistivity data and excellent results were achieved, suggesting that the Luttinger theory is a very good candidate for the explanation of the anomalous behavior of Li0.9Mo6O17. In addition, the susceptibility measurements showed Curie paramagnetism and some temperature independent paramagnetism at low temperature. The absence of any anomalous magnetic feature near 20K where the resistivity upturn takes place, suggests that a charge density wave mechanism, which has been proposed by some researchers, is not responsible for the unique properties of Li0.9Mo6O17.
Resumo:
We show that, at high densities, fully variational solutions of solidlike types can be obtained from a density functional formalism originally designed for liquid 4He . Motivated by this finding, we propose an extension of the method that accurately describes the solid phase and the freezing transition of liquid 4He at zero temperature. The density profile of the interface between liquid and the (0001) surface of the 4He crystal is also investigated, and its surface energy evaluated. The interfacial tension is found to be in semiquantitative agreement with experiments and with other microscopic calculations. This opens the possibility to use unbiased density functional (DF) methods to study highly nonhomogeneous systems, like 4He interacting with strongly attractive impurities and/or substrates, or the nucleation of the solid phase in the metastable liquid.
Resumo:
A chemically coated piezoelectric sensor has been developed for the determination of PAHs in the liquid phase. An organic monolayer attached to the surface of a gold electrode of a quartz crystal microbalance (QCM) via a covalent thiol-gold link complete with an ionically bound recognition element has been produced. This study has employed the PAH derivative 9-anthracene carboxylic acid which, once bound to the alkane thiol, functions as the recognition element. Binding of anthracene via pi-pi interaction has been observed as a frequency shift in the QCM with a detectability of the target analyte of 2 ppb and a response range of 0-50 ppb. The relative response of the sensor altered for different PAHs despite pi-pi interaction being the sole communication between recognition element and analyte. It is envisaged that such a sensor could be employed in the identification of key marker compounds and, as such, give an indication of total PAH flux in the environment.
Resumo:
Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples.
Resumo:
High energy band gap hosts doped with lanthanide ions are suitable for optical devices applications To study the potential of Ta(2)O(5) as a host compound pure and Eu(2)O(3)-doped Ta(2)O(5) crystal fibers were grown by the laser-heated pedestal growth technique in diameters ranging from 250 to 2600 pm and in lengths of up to 50 mm The axial temperature gradient at the solid/liquid interface of pure Ta(2)O(5) fibers revealed a critical diameter of 2200 gm above which the fiber cracks X-ray diffraction measurements of the pure Ta(2)O(5) single crystals showed a monoclinic symmetry and a growth direction of [1 (1) over bar 0] An analysis of the pulling rate as a function of the fiber diameter for Eu(2)O(3)-doped Ta(2)O(5) fibers indicated a well defined region in which constitutional supercooling is absent Photoluminescence measurements of pure Ta(2)O(5) crystals using excitation above the band gap (3 8 eV) were dominated by a broad unstructured green band that peaked at 500 nm Three Eu(3+)-related optical centers were identified in the doped samples with nominal concentrations exceeding 1 mol% Two of these centers were consistent with the ion in the monoclinic phase with different oxygen coordinations The third one was visible in the presence of the triclinic phase (C) 2010 Elsevier B V All rights reserved
Resumo:
Interleukin-22 (IL-22) plays an important role in the regulation of immune and inflammatory responses in mammals. The IL-22 binding protein (IL-22BP), a soluble receptor that specifically binds IL-22, prevents the IL-22/interleukin-22 receptor 1 (IL-22R1)/interleukin-10 receptor 2 (IL-10R2) complex assembly and blocks IL-22 biological activity. Here we present the crystal structure of the IL-22/IL-22BP complex at 2.75 angstrom resolution. The structure reveals IL-22BP residues critical for IL-22 binding, which were confirmed by site-directed mutagenesis and functional studies. Comparison of IL-22/IL-22BP and IL-22/IL-22R1 crystal structures shows that both receptors display an overlapping IL-22 binding surface, which is consistent with the inhibitory role played by IL-22 binding protein.