882 resultados para life-history, ant
Resumo:
Background: ;Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast;genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.;Results: ;According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall;evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level.;Conclusions: ;The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the;mechanism determining the molecular evolutionary rate at the genomic level.
Resumo:
Telomeres are protective structures at the ends of eukaryotic chromosomes. The loss of telomeres through cell division and oxidative stress is related to cellular aging, organismal growth and disease. In this way, telomeres link molecular and cellular mechanisms with organismal processes, and may explain variation in a number of important life-history traits. Here, we discuss how telomere biology relates to the study of physiological ecology and life history evolution. We emphasize current knowledge on how telomeres may relate to growth, survival and lifespan in natural populations. We finish by examining interesting new connections between telomeres and the glucocorticoid stress response. Glucocorticoids are often employed as indices of physiological condition, and there is evidence that the glucocorticoid stress response is adaptive. We suggest that one way that glucocorticoids impact organismal survival is through elevated oxidative stress and telomere loss. Future work needs to establish and explore the link between the glucocorticoid stress response and telomere shortening in natural populations. If a link is found, it provides an explanatory mechanism by which environmental perturbation impacts life history trajectories.
Resumo:
The lack of effective tools have hampered our ability to assess the size, growth and ages of clonal plants. With Serenoa repens (saw palmetto) as a model, we introduce a novel analytical framework that integrates DNA fingerprinting and mathematical modelling to simulate growth and estimate ages of clonal plants. We also demonstrate the application of such life-history information of clonal plants to provide insight into management plans. Serenoa is an ecologically important foundation species in many Southeastern United States ecosystems; yet, many land managers consider Serenoa a troublesome invasive plant. Accordingly, management plans have been developed to reduce or eliminate Serenoa with little understanding of its life history. Using Amplified Fragment Length Polymorphisms, we genotyped 263 Serenoa and 134 Sabal etonia (a sympatric non-clonal palmetto) samples collected from a 20 X 20 m study plot in Florida scrub. Sabal samples were used to assign small field-unidentifiable palmettos to Serenoa or Sabal and also as a negative control for clone detection. We then mathematically modelled clonal networks to estimate genet ages. Our results suggest that Serenoa predominantly propagate via vegetative sprouts and 10000-year-old genets may be common, while showing no evidence of clone formation by Sabal. The results of this and our previous studies suggest that: (i) Serenoa has been part of scrub associations for thousands of years, (ii) Serenoa invasion are unlikely and (ii) once Serenoa is eliminated from local communities, its restoration will be difficult. Reevaluation of the current management tools and plans is an urgent task.
Resumo:
Background: In dimorphic seabirds, the larger sex tends to provision more than the smaller sex. In contrast, monogamy and biparental care are often associated with equal effort between the sexes. However, the few studies that have tested sex-specific effort in monomorphic seabirds have primarily examined the details of foraging at sea. Hypotheses: Parental effort is also sex-biased in a monomorphic seabird mating system for one of two reasons: (1) If females enter the period of parental care less able to invest in care due to the cost of egg production, male-biased effort may be necessary to avoid reproductive failure. (2) Alternatively, female-biased effort may occur due to the initial disparity in gamete size, particularly in species with internal fertilization. Organism: Leach’s storm-petrel (Oceanodroma leucorhoa), a monomorphic seabird with true monogamy and obligate biparental care. Site: A breeding colony of Oceanodroma leucorhoa at the Bowdoin Scientific Station on Kent Island, Bay of Fundy, New Brunswick, Canada. Methods: Across multiple breeding seasons, we assessed incubation behaviour and chickrearing behaviour through one manipulative and multiple observational studies. We assessed energetic investment by inducing feather replacement and measuring the resulting rate of feather growth during both the incubation and chick-rearing phases of parental care. Conclusions: We observed male-biased effort. Males incubated the egg for a greater proportion of time than did females and, when faced with an egg that would not hatch, males continued to incubate past the point when females abandoned it. Males made a higher percentage of total food deliveries to chicks than did females, resulting in greater mean daily food provisioning by males than by females. During chick rearing, males grew replacement feathers more slowly than did females, indicating that males were more likely to reduce their own nutritional condition while raising chicks than were females. These results support the hypothesis that females enter the period of parental care at a nutritional deficit and males must compensate to avoid reproductive failure.
Resumo:
The lack of effective tools has hampered our ability to assess the size, growth and ages of clonal plants. With Serenoa repens (saw palmetto) as a model, we introduce a novel analytical frame work that integrates DNA fingerprinting and mathematical modelling to simulate growth and estimate ages of clonal plants. We also demonstrate the application of such life-history information of clonal plants to provide insight into management plans. Serenoa is an ecologically important foundation species in many Southeastern United States ecosystems; yet, many land managers consider Serenoa a troublesome invasive plant. Accordingly, management plans have been developed to reduce or eliminate Serenoa with little understanding of its life history. Using Amplified Fragment Length Polymorphisms, we genotyped 263 Serenoa and 134 Sabal etonia (a sympatric non-clonal palmetto) samples collected from a 20 x 20 m study plot in Florida scrub. Sabal samples were used to assign small field-unidentifiable palmettos to Serenoa or Sabal and also as a negative control for clone detection. We then mathematically modelled clonal networks to estimate genet ages. Our results suggest that Serenoa predominantly propagate via vegetative sprouts and 10000-year-old genets maybe common, while showing no evidence of clone formation by Sabal. The results of this and our previous studies suggest that: (i) Serenoa has been part of scrub associations for thousands of years, (ii) Serenoa invasions are unlikely and (ii) once Serenoa is eliminated from local communities, its restoration will be difficult. Reevaluation of the current management tools and plans is an urgent task.
Resumo:
The examination of telomere dynamics is a recent technique in ecology for assessing physiological state and age-related traits from individuals of unknown age. Telomeres shorten with age in most species and are expected to reflect physiological state, reproductive investment, and chronological age. Loss of telomere length is used as an indicator of biological aging, as this detrimental deterioration is associated with lowered survival. Lifespan dimorphism and more rapid senescence in the larger, shorter-lived sex are predicted in species with sexual size dimorphism, however, little is known about the effects of behavioral dimorphism on senescence and life history traits in species with sexual monomorphism. Here we compare telomere dynamics of thick-billed murres (Uria lomvia), a species with male-biased parental care, in two ways: 1) cross-sectionally in birds of known-age (0-28 years) from one colony and 2) longitudinally in birds from four colonies. Telomere dynamics are compared using three measures: the telomere restriction fragment (TRF), a lower window of TRF (TOE), and qPCR. All showed age-related shortening of telomeres, but the TRF measure also indicated that adult female murres have shorter telomere length than adult males, consistent with sex-specific patterns of ageing. Adult males had longer telomeres than adult females on all colonies examined, but chick telomere length did not differ by sex. Additionally, inter-annual telomere changes may be related to environmental conditions; birds from a potentially low quality colony lost telomeres, while those at more hospitable colonies maintained telomere length. We conclude that sex-specific patterns of telomere loss exist in the sexually monomorphic thick-billed murre but are likely to occur between fledging and recruitment. Longer telomeres in males may be related to their homogamous sex chromosomes (ZZ) or to selection for longer life in the care-giving sex. Environmental conditions appeared to be the primary drivers of annual changes in adult birds.
Resumo:
Conservation strategies for long-lived vertebrates require accurate estimates of parameters relative to the populations' size, numbers of non-breeding individuals (the “cryptic” fraction of the population) and the age structure. Frequently, visual survey techniques are used to make these estimates but the accuracy of these approaches is questionable, mainly because of the existence of numerous potential biases. Here we compare data on population trends and age structure in a bearded vulture (Gypaetus barbatus) population from visual surveys performed at supplementary feeding stations with data derived from population matrix-modelling approximations. Our results suggest that visual surveys overestimate the number of immature (<2 years old) birds, whereas subadults (3–5 y.o.) and adults (>6 y.o.) were underestimated in comparison with the predictions of a population model using a stable-age distribution. In addition, we found that visual surveys did not provide conclusive information on true variations in the size of the focal population. Our results suggest that although long-term studies (i.e. population matrix modelling based on capture-recapture procedures) are a more time-consuming method, they provide more reliable and robust estimates of population parameters needed in designing and applying conservation strategies. The findings shown here are likely transferable to the management and conservation of other long-lived vertebrate populations that share similar life-history traits and ecological requirements.
Resumo:
Several prominent hypotheses have been posed to explain the immense variability among plant species in defense against herbivores. A major concept in the evolutionary ecology of plant defenses is that tradeoffs of defense strategies are likely to generate and maintain species diversity. In particular, tradeoffs between constitutive and induced resistance and tradeoffs relating these strategies to growth and competitive ability have been predicted. We performed three independent experiments on 58 plant species from 15 different plant families to address these hypotheses in a phylogenetic framework. Because evolutionary tradeoffs may be altered by human-imposed artificial selection, we used 18 wild plant species and 40 cultivated garden-plant species. Across all 58 plant species, we demonstrate a tradeoff between constitutive and induced resistance, which was robust to accounting for phylogenetic history of the species. Moreover, the tradeoff was driven by wild species and was not evident for cultivated species. In addition, we demonstrate that more competitive species—but not fast growing ones—had lower constitutive but higher induced resistance. Thus, our multispecies experiments indicate that the competition–defense tradeoff holds for constitutive resistance and is complemented by a positive relationship of competitive ability with induced resistance. We conclude that the studied genetically determined tradeoffs are indeed likely to play an important role in shaping the high diversity observed among plant species in resistance against herbivores and in life history traits.
Resumo:
Mounting an immune response against pathogens incurs costs to organisms by its effects on important life-history traits, such as reproductive investment and survival. As shown recently, immune activation produces large amounts of reactive species and is suggested to induce oxidative stress. Sperm are highly susceptible to oxidative stress, which can negatively impact sperm function and ultimately male fertilizing efficiency. Here we address the question as to whether mounting an immune response affects sperm quality through the damaging effects of oxidative stress. It has been demonstrated recently in birds that carotenoid-based ornaments can be reliable signals of a male's ability to protect sperm from oxidative damage. In a full-factorial design, we immune-challenged great tit males while simultaneously increasing their vitamin E availability, and assessed the effect on sperm quality and oxidative damage. We conducted this experiment in a natural population and tested the males' response to the experimental treatment in relation to their carotenoid-based breast coloration, a condition-dependent trait. Immune activation induced a steeper decline in sperm swimming velocity, thus highlighting the potential costs of an induced immune response on sperm competitive ability and fertilizing efficiency. We found sperm oxidative damage to be negatively correlated with sperm swimming velocity. However, blood resistance to a free-radical attack (a measure of somatic antioxidant capacity) as well as plasma and sperm levels of oxidative damage (lipid peroxidation) remained unaffected, thus suggesting that the observed effect did not arise through oxidative stress. Towards the end of their breeding cycle, swimming velocity of sperm of more intensely colored males was higher, which has important implications for the evolution of mate choice and multiple mating in females because females may accrue both direct and indirect benefits by mating with males having better quality sperm.
Resumo:
Background: Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results: Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m similar to 0.094 - 0.097) in the Volta populations. Conclusions: This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.
Resumo:
In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor.
Resumo:
Fluctuations of food availability, habitat quality, and environmental conditions throughout the year have been implicated in the breeding success and survival of migratory birds. Levels of circulating corticosterone, the hormone involved in energy balance and the stress response in birds, are also affected by fluctuations in these variables, and also play a role in self-maintenance and survival. In addition to changes in behaviors and resource allocation, the metabolic effects of corticosterone increase the amount of free radicals in the body, which can cause oxidative stress and damage lipids and DNA. In this thesis, I assessed if diet and physiology during the breeding and non-breeding seasons contributed to the reproductive success, survival, and oxidative stress of a long-lived migratory seabird, Leach’s storm-petrel (Oceanodroma leucorhoa). I tested the hypotheses that 1.) diet and physiology throughout the breeding and non-breeding seasons predict reproductive effort; and 2.) corticosterone affects telomere length, a measure of oxidative damage. Through analyses of stable isotopes, corticosterone, and antioxidant capacity, I found that although there was variation in these measures of diet and physiology within the population, none of these factors during the breeding or non-breeding seasons correlated with reproductive effort or success. I also found that feather and plasma corticosterone did not predict telomere length. The life history strategies of Leach’s storm-petrels appear to be complex, and many factors likely contribute to self-maintenance and the decision to breed. Long-term monitoring of these variables may help identify relationships between trends in oceanographic variables during both the breeding and non-breeding seasons with reproductive effort and success, and survival.
Resumo:
The interface between climate and ecosystem structure and function is incompletely understood, partly because few ecological records start before the recent warming phase. Here, we analyse an exceptional 100-yr long record of the great tit (Parus major) population in Switzerland in relation to climate and habitat phenology. Using structural equation analysis, we demonstrate an uninterrupted cascade of significant influences of the large-scale atmospheric circulation (North-Atlantic Oscillation, NAO, and North-sea – Caspian Pattern, NCP) on habitat and breeding phenology, and further on fitness-relevant life history traits within great tit populations. We then apply the relationships of this analysis to reconstruct the circulation-driven component of fluctuations in great tit breeding phenology and productivity on the basis of new seasonal NAO and NCP indices back to 1500 AD. According to the structural equation model, the multi-decadal oscillation of the atmospheric circulation likely led to substantial variation in habitat phenology, productivity and consequently, tit population fluctuations with minima during the "Maunder Minimum" (∼ 1650–1720) and the Little Ice Age Type Event I (1810–1850). The warming since 1975 was not only related with a quick shift towards earlier breeding, but also with the highest productivity since 1500, and thus, the impact of the NAO and NCP has contributed to an unprecedented increase of the population. A verification of the structural equation model against two independent data series (1970–2000 and 1750–1900) corroborates that the retrospective model reliably depicts the major long-term NAO/NCP impact on ecosystem parameters. The results suggest a complex cascade of climate effects beginning at a global scale and ending at the level of individual life histories. This sheds light on how large-scale climate conditions substantially affect major life history parameters within a population, and thus influence key ecosystem parameters at the scale of centuries.
Resumo:
Parasites are linked with their host in a trophic interaction with implications for both hosts and parasites. Interaction stretches from the host's immune response to the structuring of communities and the evolution of biodiversity. As in many species sex determines life history strategy, response to parasites may be sex-specific. Males of vertebrate species tend to exhibit higher rates of parasites than females. Sex-associated hormones may influence immunocompetence and are hypothesised to lead to this bias. In a field study, we tested the prediction of male biased parasitism (MBP) in free ranging chamois (Rupicapra rupicapra rupicapra), which are infested intensely by gastrointestinal and lung helminths. We further investigated sex differences in faecal androgen (testosterone and epiandrosterone), cortisol and oestrogen metabolites using enzyme immunoassays (EIA) to evaluate the impact of these hormones on sex dependent parasite susceptibility. Non-invasive methods were used and the study was conducted throughout a year to detect seasonal patterns. Hormone levels and parasite counts varied significantly throughout the year. Male chamois had a higher output of gastrointestinal eggs and lungworm larvae when compared to females. The hypothesis of MBP originating in sex related hormone levels was confirmed for the elevated output of lungworm larvae, but not for the gastrointestinal nematodes. The faecal output of lungworm larvae was significantly correlated with androgen and cortisol metabolite levels. Our study shows that sex differences in steroid levels play an important role to explain MBP, although they alone cannot fully explain the phenomenon.
Resumo:
BACKGROUND: The arginine-vasopressin 1a receptor has been identified as a key determinant for social behaviour in Microtus voles, humans and other mammals. Nevertheless, the genetic bases of complex phenotypic traits like differences in social and mating behaviour among species and individuals remain largely unknown. Contrary to previous studies focusing on differences in the promotor region of the gene, we investigate here the level of functional variation in the coding region (exon 1) of this locus. RESULTS: We detected high sequence diversity between higher mammalian taxa as well as between species of the genus Microtus. This includes length variation and radical amino acid changes, as well as the presence of distinct protein variants within individuals. Additionally, negative selection prevails on most parts of the first exon of the arginine-vasopressin receptor 1a (avpr1a) gene but it contains regions with higher rates of change that harbour positively selected sites. Synonymous and non-synonymous substitution rates in the avpr1a gene are not exceptional compared to other genes, but they exceed those found in related hormone receptors with similar functions. DISCUSSION: These results stress the importance of considering variation in the coding sequence of avpr1a in regards to associations with life history traits (e.g. social behaviour, mating system, habitat requirements) of voles, other mammals and humans in particular.