781 resultados para lepidoptera
Resumo:
Trichogramma species are mass-produced for biological control using host eggs. Artificial diets have been developed to reduce production costs, however, most include insect haemolymph as a major component, which still results in a significant expense. Medium conditioned with insect cell lines has produced some success as a haemolymph replacement in artificial diets for several parasitoid wasp species. Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) was the first species to develop successfully to the adult stage on diets containing concentrated HeliothiS zea (Boddie) (Lepidoptera: Noctuidae) cells. Tricho-gramma pretiosum Riley (Hymenoptera: Trichogrammatidae) was subsequently grown to the adult stage on a similar cell line diet. This success encouraged a systematic investigation into the use of insect cell lines in Trichogramma artificial diets. We compared the effect of diets containing insect cells with diets containing conditioned cell line media. Diets containing insect cells produced significantly more pupae than diets containing conditioned medium and, although not significant, produced a higher number of adults. Second, we compared the effect of diets containing cell lines established from ovary-associated tissue of H. zea and embryo tissue of Aedes albopictus (Skuse) (Diptera: Culicidae) on T pretiosum development. Trichogramma pretiosum development was not significantly different on diets containing cells from the two origins and tissue types. Third, the effect of cell storage on T pretiosum development was observed. HeliothiS zea cells in medium were stored at 4 degrees C and room temperature (22 degrees C for one, two, four and seven days before addition to artificial diets. Cell viability was calculated for these storage treatments. HeliothiS zea cells could be stored at 4 degrees C for up to seven days with no detrimental effect on T pretiosum development. Tricho-gramma pretiosum development did not depend on cell viability. The use of insect cell lines as a haemolymph replacement has the potential to significantly reduce production costs and simplify Trichogramma artificial diets with the eventual aim of replacing host production in mass rearing facilities. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Understanding how insect pests forage on their food plants can help optimize management strategies. Helicoverpa armigera (Hubner) (Lep., Noctuidae) is a major polyphagous pest of agricultural crops worldwide. The immature stages feed and forage on crops at all stages of plant development, damaging fruiting and non-fruiting structures, yet very little is known about the influence of host type or stage on the location and behaviour of larvae. Through semi-continuous observation, we evaluated the foraging (movement and feeding) behaviours of H. armigera first instar larvae as well as the proportion of time spent at key locations on mungbean [Vigna radiata (L.) Wilczek] and pigeon pea [Cajanus cajan (L.) Millspaugh] of differing developmental stages: seedling- and mature (flowering/pod fill)-stage plants. Both host type and age affected the behaviour of larvae. Larvae spent more time in the upper parts of mature plants than on seedlings and tended to stay at the top of mature plants if they moved there. This difference was greater in pigeon pea than in mungbean. The proportion of time allocated to feeding on different parts of a plant differed with host and age. More feeding occurred in the top of mature pigeon pea plants but did not differ between mature and seedling mungbean plants. The duration of key behaviours did not differ between plant ages in either crop type and was similar between hosts although resting bouts were substantially longer on mungbeans. Thus a polyphagous species such as H. armigera does not forage in equivalent ways on different hosts in the first instar stage.
Resumo:
Wasps of the genus Trichogramma parasitise the eggs of Lepidoptera. They may deposit one or many eggs in each host. Survival is high at low density but reaches a plateau as density increases. To reveal the mechanism by which excess larvae die we chose a lepidopteran host that has flattened, transparent eggs and used video microscopy to record novel feeding behaviours and interactions of larval Trichogramma carverae (Oatman and Pinto) at different densities. Single larvae show a rapid food ingestion phase, followed by a period of extensive saliva release. Ultimately the host egg is completely consumed. The larva then extracts excess moisture from the egg, providing a dry environment for pupation. When multiple larvae are present, the initial scramble for food results in the larvae consuming all of the egg contents early in development. All larvae survive if there is sufficient food for all to reach a threshold developmental stage. If not, physical proximity results in attack and consumption of others, continuing until the surviving larvae reach the threshold stage beyond which attacks seem to be no longer effective. The number of larvae remaining at the end of rapid ingestion dictates how many will survive to emerge as adults.
Resumo:
Bt transgenic cotton has not shown the same level of resistance to bollworm in China, as in other major Bt cotton growing areas of the world. The objective of this study was to investigate the effects of high temperature on the CryIA insecticidal protein content and nitrogen metabolism, in the leaf of Bt transgenic cotton. The study was undertaken on two transgenic cotton cultivars, one conventional (Xinyang 822) and the other a hybrid (Kumian No. 1), during the 2001 and 2002 growing seasons at the Yangzhou University Farm, Yangzhou, China. In the 2001 study, potted cotton plants were exposed to 37 C for 24 h under glasshouse conditions at three growth stages peak square, peak flowering and peak boll developing periods. Based on the 2001 results, in 2002 the same two cultivars were exposed to the same temperature for 48 h at two growth stages-peak flowering and boll developing periods. The results of the study indicated that the insecticidal protein content of the leaf was not significantly affected by the stress during the square and flowering periods. However, exposure to high temperature for 24h during the boll period reduced the CryIA protein content by approximately 51% in the cultivar Kumian No 1, and 30% in Xinyang 822 in the 2001 study, and by approximately 73 and 63% for 48 h with the same cultivars, respectively, in the 2002 study. Glutamic-pyruvic transaminase (GPT) activity, total free amino acid and soluble protein content, and the activity of protease in the leaf, showed relatively little change in response to high temperature in the flowering period. However, exposure to high temperature in the boll period resulted in the following changes - a reduction of GPT activity, a sharp increase in free amino acid content, a significant decrease in soluble protein content, and significant increases in the activity of protease. The results suggest that high temperature may result in the degradation of soluble protein in the leaf, with a resulting decline in the level of the toxin CryIA. It is believed that this may be the cause of the reduced efficacy of Bt cotton in growing conditions in China, where temperatures during the boll period often reach 36-40° C. © 2004 Elsevier B.V All rights reserved.
Resumo:
Long-term forecasts of pest pressure are central to the effective management of many agricultural insect pests. In the eastern cropping regions of Australia, serious infestations of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner)(Lepidoptera: Noctuidae) are experienced annually. Regression analyses of a long series of light-trap catches of adult moths were used to describe the seasonal dynamics of both species. The size of the spring generation in eastern cropping zones could be related to rainfall in putative source areas in inland Australia. Subsequent generations could be related to the abundance of various crops in agricultural areas, rainfall and the magnitude of the spring population peak. As rainfall figured prominently as a predictor variable, and can itself be predicted using the Southern Oscillation Index (SOI), trap catches were also related to this variable. The geographic distribution of each species was modelled in relation to climate and CLIMEX was used to predict temporal variation in abundance at given putative source sites in inland Australia using historical meteorological data. These predictions were then correlated with subsequent pest abundance data in a major cropping region. The regression-based and bioclimatic-based approaches to predicting pest abundance are compared and their utility in predicting and interpreting pest dynamics are discussed.
Resumo:
We investigated the rates of egg and larval parasitism in transgenic and non-transgenic, conventional cottons. Sentinel eggs and larvae of the cotton bollworm, CBW, Helicoverpa armigera Hubner, were released and collected at regular intervals across the cotton growing season, and the relationship between parasitism and different cotton cultivars determined. Egg and larval parasitism were significantly lower in the transgenic cottons than in the non-transgenic conventional cottons. The egg parasitoid recovered was Trichogramma confusum Viggiani and the predominant larval parasitoids were Campoletis chlorideae Uchida and Meteorus pulchriconis (Wesmael). Our studies indicate a potential negative interaction between transgenic cottons and parasitoids of CBW but need to be interpreted with caution because no within-year replication was used and treatments were not spatially randomised across years.
Resumo:
When investigating strategies for Helicoverpa armigera (Hubner) control, it is important to understand oviposition behaviour. Cotton (Gossypium hirsutum) was sown into standing wheat (Triticum astivum L.) stubble in a closed arena to investigate the effect of stubble on H. armigera moth behaviour and oviposition. Infrared cameras were used to track moths and determine whether stubble acted as a physical barrier or provided camouflage to cotton plants, thereby reducing oviposition. Searching activity was observed to peak shortly before dawn (03:00 and 04:00 h) and remained high until just after dawn (4 h window). Moths spent more time resting on cotton plants than spiralling above them, and the least time flying across the arena. While female moths spent more time searching for cotton plants growing in wheat stubble, the difference in oviposition was not significant. As similar numbers of eggs were laid on cotton plants with stubble (3.5/plant SE +/- 0.87) and without stubble (2.5/plant SE +/- 0.91), wheat stubble does not appear to provide camouflage to cotton plants. There was no significant difference in the location of eggs deposited on cotton plants with and without stubble, although more eggs were laid on the tops of cotton leaves in wheat stubble. As the spatial and temporal distribution of eggs laid on the cotton plant is a crucial component of population stability, eggs laid on the upper side of leaves on cotton plants may be more prone to fatalities caused by environmental factors such as wind and rain. Therefore, although stubble did not influence the number of eggs laid, it did affect their distribution on the plant, which may result in increased mortality of eggs on cotton plants sown into standing wheat stubble.
Resumo:
An important question in the host-finding behaviour of a polyphagous insect is whether the insect recognizes a suite or template of chemicals that are common to many plants? To answer this question, headspace volatiles of a subset of commonly used host plants (pigeon pea, tobacco, cotton and bean) and nonhost plants (lantana and oleander) of Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) are screened by gas chromatography (GC) linked to a mated female H. armigera electroantennograph (EAG). In the present study, pigeon pea is postulated to be a primary host plant of the insect, for comparison of the EAG responses across the test plants. EAG responses for pigeon pea volatiles are also compared between females of different physiological status (virgin and mated females) and the sexes. Eight electrophysiologically active compounds in pigeon pea headspace are identified in relatively high concentrations using GC linked to mass spectrometry (GC-MS). These comprised three green leaf volatiles [(2E)-hexenal, (3Z)-hexenylacetate and (3Z)-hexenyl-2-methylbutyrate] and five monoterpenes (alpha-pinene,beta-myrcene, limonene, E-beta-ocimene and linalool). Other tested host plants have a smaller subset of these electrophysiologically active compounds and even the nonhost plants contain some of these compounds, all at relatively lower concentrations than pigeon pea. The physiological status or sex of the moths has no effect on the responses for these identified compounds. The present study demonstrates how some host plants can be primary targets for moths that are searching for hosts whereas the other host plants are incidental or secondary targets.
Resumo:
Ascoviruses (AVs) infect larvae of various insect pests belonging to the family Noctuidae. The result of AV infection in the hosts is cleavage of infected cells into vesicles, a unique feature of AV infection. Since insect cell lines facilitate the study of virus life cycles, attempts were made to analyze Heliothis virescens AV (HvAV3e) infection in several cell lines and compare cell pathology to larval infection. In this study, replication and cytopathological effects of HvAV3e on four different cell lines were investigated. HvAV3e replication was confirmed in three noctuid cell lines from Spodoptera frugiperda (Sf9) and Helicoverpa zea (BCIRL-Hz-AM1 and FB33). However, the virus did not replicate in the non-noctuid insect cell line from Pieris rapae (Pieridae). Despite replication of the virus in the three permissive cell lines, the cytopathological effects of the virus were significantly different from that of larval infection.
Resumo:
Predatory insects and spiders are key elements of integrated pest management (IPM) programmes in agricultural crops such as cotton. Management decisions in IPM programmes should to be based on a reliable and efficient method for counting both predators and pests. Knowledge of the temporal constraints that influence sampling is required because arthropod abundance estimates are likely to vary over a growing season and within a day. Few studies have adequately quantified this effect using the beat sheet, a potentially important sampling method. We compared the commonly used methods of suction and visual sampling to the beat sheet, with reference to an absolute cage clamp method for determining the abundance of various arthropod taxa over 5 weeks. There were significantly more entomophagous arthropods recorded using the beat sheet and cage clamp methods than by using suction or visual sampling, and these differences were more pronounced as the plants grew. In a second trial, relative estimates of entomophagous and phytophagous arthropod abundance were made using beat sheet samples collected over a day. Beat sheet estimates of the abundance of only eight of the 43 taxa examined were found to vary significantly over a day. Beat sheet sampling is recommended in further studies of arthropod abundance in cotton, but researchers and pest management advisors should bear in mind the time of season and time of day effects.
Resumo:
The response of generalist egg parasitoids to alternative natural hosts that are present simultaneously is not well known. We investigated the behavior of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) in relation to two field hosts Helicoverpa armigera Hubner and Spodoptera litura Fabricius, in choice and no choice tests. We quantified the effects of natal host species and post-emergence adult age on the oviposition preference of the parasitoids. H. armigera eggs were consistently preferred over S. litura eggs, regardless of the natal host and adult age. When only S. litura eggs were available as hosts, they were parasitized at statistically similar rates to H. armigera eggs (average of 17 +/- 2.7 vs. 13 +/- 3.0, H. armigera to S. litura). The adult lifespan and lifetime fecundity of T. pretiosum were variable but were affected by natal host species and/or host species to which they were exposed. Mean lifespan and fecundity of parasitoids that had developed in H. armigera eggs and were exposed to H. armigera eggs for oviposition were 13.9 +/- 1.8 days and 98.7 +/- 11.0 adult offspring. By contrast, those that developed in S. litura eggs and were exposed to S. litura eggs for oviposition lived for 7 +/- 0.9 days and produced 53.8 +/- 8.0 adult offspring. The ovigeny index (OI) was significantly lower in the parasitoids exposed to H. armigera eggs than in those exposed to S. litura eggs, regardless of the natal host, indicating that H. armigera eggs sustain the adult parasitoids better than S. litura eggs. These results are used to predict parasitoid behavior in the field when both hosts are available. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Climate change is one of the biggest environmental problems of the 21st century. The most sensitive indicators of the effects of the climatic changes are phenological processes of the biota. The effects of climate change which were observed the earliest are the remarkable changes in the phenology (i.e. the timing of the phenophases) of the plants and animals, which have been systematically monitored later. In our research we searched for the answer: which meteorological factors show the strongest statistical relationships with phenological phenomena based on some chosen plant and insect species (in case of which large phenological databases are available). Our study was based on two large databases: one of them is the Lepidoptera database of the Hungarian Plant Protection and Forestry Light Trap Network, the other one is the Geophytes Phenology Database of the Botanical Garden of Eötvös Loránd University. In the case of butterflies, statistically defined phenological dates were determined based on the daily collection data, while in the case of plants, observation data on blooming were available. The same meteorological indicators were applied for both groups in our study. On the basis of the data series, analyses of correlation were carried out and a new indicator, the so-called G index was introduced, summing up the number of correlations which were found to be significant on the different levels of significance. In our present study we compare the significant meteorological factors and analyse the differences based on the correlation data on plants and butterflies. Data on butterflies are much more varied regarding the effectiveness of the meteorological factors.
Resumo:
Our method is presented with displaying time series, consisting of the daily amount of precipitation of 100 years, which has meant a separate challenge, as the precipitation data shows significant deviations. By nowadays, mankind has changed its environment to such an extent that it has a significant effect on other species as well. The Lepidoptera data series of the National Plant Protection and Forestry Light Trap Network can be used to justify this. This network has a national coverage, a large number of collected Lepidoptera, and an available, long data series of several years. For obtaining information from these data, the setting up of an easy to manage database is necessary. Furthermore, it is important to represent our data and our results in an easily analysable and expressive way. In this article the setting up of the database is introduced, together with the presentation of a three dimensional visualization method, which depicts the long-range and seasonal changes together.