968 resultados para left coronary artery
Resumo:
BACKGROUND: Few studies have examined plaque characteristics among multiple arterial beds in vivo. The purpose of this study was to compare the plaque morphology and arterial remodeling between coronary and peripheral arteries using gray-scale and radiofrequency intravascular ultrasound (IVUS) at clinical presentation. METHODS AND RESULTS: IVUS imaging was performed in 68 patients with coronary and 93 with peripheral artery lesions (29 carotid, 50 renal, and 14 iliac arteries). Plaques were classified as fibroatheroma (VH-FA) (further subclassified as thin-capped [VH-TCFA] and thick-capped [VH-ThCFA]), fibrocalcific plaque (VH-FC) and pathological intimal thickening (VH-PIT). Plaque rupture (13% of coronary, 7% of carotid, 6% of renal, and 7% of iliac arteries; P = NS) and VH-TCFA (37% of coronary, 24% of carotid, 16% of renal, and 7% of iliac arteries; P = 0.02) were observed in all arteries. Compared with coronary arteries, VH-FA was less frequently observed in renal (P < 0.001) and iliac arteries (P < 0.006). Lesions with positive remodeling demonstrated more characteristics of VH-FA in coronary (84% vs. 25%, P < 0.001), carotid (72% vs. 20%, P = 0.001), and renal arteries (42% vs. 4%, P = 0.001) compared with those with intermediate/negative remodeling. There was positive relationship between remodeling index and percent necrotic area in all four arteries. CONCLUSIONS: Atherosclerotic plaque phenotypes were heterogeneous among four different arteries; renal and iliac arteries had more stable phenotypes compared with coronary artery. In contrast, the associations of remodeling pattern with plaque phenotype and composition were similar among the various arterial beds.
Effects of long-term estrogen replacement therapy in postmenopausal women with coronary risk factors
Resumo:
Objective: Hormone replacement therapy (HRT) with estrogen alone or in concert with progesterone may exert beneficial effects on coronary endothelium-dependent vasomotion in postmenopausal women without traditional coronary risk factors. We aimed to evaluate the effect of HRT on coronary vasomotor function in postmenopausal women with traditional coronary risk factors such as hypertension, hypercholesterolemia and smoking as compared to those without HRT. Methods: Combining N-13 ammonia with PET, myocardial blood flow (MBF) was measured in ml/g/min at rest, during cold pressor test (CPT, reflecting predominantly endothelium-dependent vasomotion)and during pharmacologic vasodilation (representing predominantly endothelium-independent vasomotion) in 48 postmenopausal women with various coronary risk factors during a mean follow up (FU) of 20_9 months. postmenopausal women wer grouped according to HRT: group 1 with HRT (n_18), group 2 without HRT (n_18) and group 3 with HRT at baseline but not at FU (n_12). Results: during FU, HRT did not significantly affect lipid profile and plasma glucose levels. At baseline resting MBF was similar between groups (Table).After the FU, in group 2 and 3 the endothelium-related increase in MBF from rest to CPT (_ MBF) was significantly less than at baseline (*p_0.05) (Table). Conversely, in group 1 _MBF to CPT at FU was not significantly different from the baseline study. The group comparison of CPT-induced _MBF in group 2 and group 3 after the FU period was significantly different from group 1 (p_0.006 by ANOVA). Finally, in all three groups, hyperemic MBFs during pharmacologic vasodilation did not differ significantly between baseline and FU (Table). Conclusion: In postmenopausal women with coronary risk factors, HRT may counterbalance the adverse effects of traditional coronary risk factors on endothelium-dependent coronary vasomotion. Consequently, in addition to standard management of coronary risk factors, HRT may exert beneficial effects on the coronary endothelium that may delay the progression of coronary artery disease in postmenopausal women.
Resumo:
Obstructive disease of the large coronary arteries is the prominent cause for angina pectoris. However, angina may also occur in the absence of significant coronary atherosclerosis or coronary artery spasm, especially in women. Myocardial ischaemia in these patients is often associated with abnormalities of the coronary microcirculation and may thus represent a manifestation of coronary microvascular disease (CMD). Elucidation of the role of the microvasculature in the genesis of myocardial ischaemia and cardiac damage-in the presence or absence of obstructive coronary atherosclerosis-will certainly result in more rational diagnostic and therapeutic interventions for patients with ischaemic heart disease. Specifically targeted research based on improved assessment modalities is needed to improve the diagnosis of CMD and to translate current molecular, cellular, and physiological knowledge into new therapeutic options.
Resumo:
BACKGROUND: Refinements in stent design affecting strut thickness, surface polymer, and drug release have improved clinical outcomes of drug-eluting stents. We aimed to compare the safety and efficacy of a novel, ultrathin strut cobalt-chromium stent releasing sirolimus from a biodegradable polymer with a thin strut durable polymer everolimus-eluting stent. METHODS: We did a randomised, single-blind, non-inferiority trial with minimum exclusion criteria at nine hospitals in Switzerland. We randomly assigned (1:1) patients aged 18 years or older with chronic stable coronary artery disease or acute coronary syndromes undergoing percutaneous coronary intervention to treatment with biodegradable polymer sirolimus-eluting stents or durable polymer everolimus-eluting stents. Randomisation was via a central web-based system and stratified by centre and presence of ST segment elevation myocardial infarction. Patients and outcome assessors were masked to treatment allocation, but treating physicians were not. The primary endpoint, target lesion failure, was a composite of cardiac death, target vessel myocardial infarction, and clinically-indicated target lesion revascularisation at 12 months. A margin of 3·5% was defined for non-inferiority of the biodegradable polymer sirolimus-eluting stent compared with the durable polymer everolimus-eluting stent. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT01443104. FINDINGS: Between Feb 24, 2012, and May 22, 2013, we randomly assigned 2119 patients with 3139 lesions to treatment with sirolimus-eluting stents (1063 patients, 1594 lesions) or everolimus-eluting stents (1056 patients, 1545 lesions). 407 (19%) patients presented with ST-segment elevation myocardial infarction. Target lesion failure with biodegradable polymer sirolimus-eluting stents (69 cases; 6·5%) was non-inferior to durable polymer everolimus-eluting stents (70 cases; 6·6%) at 12 months (absolute risk difference -0·14%, upper limit of one-sided 95% CI 1·97%, p for non-inferiority <0·0004). No significant differences were noted in rates of definite stent thrombosis (9 [0·9%] vs 4 [0·4%], rate ratio [RR] 2·26, 95% CI 0·70-7·33, p=0·16). In pre-specified stratified analyses of the primary endpoint, biodegradable polymer sirolimus-eluting stents were associated with improved outcome compared with durable polymer everolimus-eluting stents in the subgroup of patients with ST-segment elevation myocardial infarction (7 [3·3%] vs 17 [8·7%], RR 0·38, 95% CI 0·16-0·91, p=0·024, p for interaction=0·014). INTERPRETATION: In a patient population with minimum exclusion criteria and high adherence to dual antiplatelet therapy, biodegradable polymer sirolimus-eluting stents were non-inferior to durable polymer everolimus-eluting stents for the combined safety and efficacy outcome target lesion failure at 12 months. The noted benefit in the subgroup of patients with ST-segment elevation myocardial infarction needs further study. FUNDING: Clinical Trials Unit, University of Bern, and Biotronik, Bülach, Switzerland.
Resumo:
Purpose: Recent studies showed that pericardial fat was independently correlated with the development of coronary artery disease (CAD). The mechanism remains unclear. We aimed at assessing a possible relationship between pericardial fat volume and endothelium-dependent coronary vasomotion, a surrogate of future cardiovascular events.Methods: Fifty healthy volunteers without known CAD or cardiovascular risk factors (CRF) were enrolled. They all underwent a dynamic Rb- 82 cardiac PET/CT to quantify myocardial blood flow (MBF) at rest, during MBF response to cold pressure test (CPT-MBF) and adenosine stress. Pericardial fat volume (PFV) was measured using a 3D volumetric CT method and common biological CRF (glucose and insulin levels, HOMA-IR, cholesterol, triglyceride, hs-CRP). Relationships between MBF response to CPT, PFV and other CRF were assessed using non-parametric Spearman correlation and multivariate regression analysis of variables with significant correlation on univariate analysis (Stata 11.0).Results: All of the 50 participants had normal MBF response to adenosine (2.7±0.6 mL/min/g; 95%CI: 2.6−2.9) and myocardial flow reserve (2.8±0.8; 95%CI: 2.6−3.0) excluding underlying CAD. Simple regression analysis revealed a significant correlation between absolute CPTMBF and triglyceride level (rho = −0.32, p = 0.024) fasting blood insulin (rho = −0.43, p = 0.0024), HOMA-IR (rho = −0.39, p = 0.007) and PFV (rho = −0.52, p = 0.0001). MBF response to adenosine was only correlated with PFV (rho = −0.32, p = 0.026). On multivariate regression analysis PFV emerged as the only significant predictor of MBF response to CPT (p = 0.002).Conclusion: PFV is significantly correlated with endothelium-dependent coronary vasomotion. High PF burden might negatively influence MBF response to CPT, as well as to adenosine stress, even in persons with normal hyperemic myocardial perfusion imaging, suggesting a link between PF and future cardiovascular events. While outside-to-inside adipokines secretion through the arterial wall has been described, our results might suggest an effect upon NO-dependent and -independent vasodilatation. Further studies are needed to elucidate this mechanism.
Resumo:
The outcome after primary percutaneous coronary intervention (pPCI) for ST-elevation myocardial infarction (STEMI) is strongly affected by time delays. In this study, we sought to identify the impact of specific socioeconomic factors on time delays, subsequent STEMI management and outcomes in STEMI patients undergoing pPCI, who came from a well-defined region of the French part of Switzerland. A total of 402 consecutive patients undergoing pPCI for STEMI in a large tertiary hospital were retrospectively studied. Symptom-to-first-medical-contact time was analysed for the following socioeconomic factors: level of education, origin and marital status. Main exclusion criteria were: time delay beyond 12 hours, previous treatment with fibrinolytic agents or patients immediately referred for coronary artery bypass graft surgery. Therefore, 222 patients were finally included. At 1 year, there was no difference in mortality between the different socioeconomic groups. Furthermore, there was no difference in management characteristics between them. Symptom-to-first-medical-contact time was significantly longer for patients with a low level of education, Swiss citizens and unmarried patients, with median differences of 23 minutes, 18 minutes and 13 minutes, respectively (p <0.05). Nevertheless, no difference was found regarding in-hospital management and clinical outcome. This study demonstrates that symptom-to-first-medical-contact time is longer amongst people with a lower educational level, Swiss citizens and unmarried people. Because of the low mortality rate in general, these differences in delays did not affect clinical outcomes. Still, tertiary prevention measures should particularly focus on these vulnerable populations.
Resumo:
BACKGROUND: The relationship between coronary endothelial function and coronary calcification is not well established. METHODS: Forty-six patients 17 men [37%]; age, 47.4+/-11.4 years prospectively underwent testing for coronary endothelial function and measurement of coronary artery calcification (CAC). RESULTS: Log CAC scores were not significantly different between patients with normal (n=31) and abnormal (n=15) response of epicardial coronary artery diameter to acetylcholine (%CAD(Ach)) (median (25, 75 percentile) 1.1 (0.0, 3.7) vs. 0.3 (0.0, 2.4), P=.32) and with normal (n=28) and abnormal (n=18) response of coronary blood flow to acetylcholine (%CBF(Ach)) (0.5 (0.0, 3.6) vs. 0.5 (0.0, 3.2), P=.76). Log CAC scores did not correlate with %CAD(Ach) (r=0.08, P=.59), %CBF(Ach) (r=0.14, P=.35). CONCLUSIONS: In patients without significant coronary artery disease, coronary endothelial dysfunction showed no apparent association with coronary calcification. Our findings suggest that these 2 markers may represent separate, independent processes in the progression of coronary atherosclerosis.
Resumo:
PURPOSE: To compare 3 different flow targeted magnetization preparation strategies for coronary MR angiography (cMRA), which allow selective visualization of the vessel lumen. MATERIAL AND METHODS: The right coronary artery of 10 healthy subjects was investigated on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Healthcare, Best, NL). A navigator-gated and ECG-triggered 3D radial steady-state free-precession (SSFP) cMRA sequence with 3 different magnetization preparation schemes was performed referred to as projection SSFP (selective labeling of the aorta, subtraction of 2 data sets), LoReIn SSFP (double-inversion preparation, selective labeling of the aorta, 1 data set), and inflow SSFP (inversion preparation, selective labeling of the coronary artery, 1 data set). Signal-to-noise ratio (SNR) of the coronary artery and aorta, contrast-to-noise ratio (CNR) between the coronary artery and epicardial fat, vessel length and vessel sharpness were analyzed. RESULTS: All cMRA sequences were successfully obtained in all subjects. Both projection SSFP and LoReIn SSFP allowed for selective visualization of the coronary arteries with excellent background suppression. Scan time was doubled in projection SSFP because of the need for subtraction of 2 data sets. In inflow SSFP, background suppression was limited to the tissue included in the inversion volume. Projection SSFP (SNR(coro): 25.6 +/- 12.1; SNR(ao): 26.1 +/- 16.8; CNR(coro-fat): 22.0 +/- 11.7) and inflow SSFP (SNR(coro): 27.9 +/- 5.4; SNR(ao): 37.4 +/- 9.2; CNR(coro-fat): 24.9 +/- 4.8) yielded significantly increased SNR and CNR compared with LoReIn SSFP (SNR(coro): 12.3 +/- 5.4; SNR(ao): 11.8 +/- 5.8; CNR(coro-fat): 9.8 +/- 5.5; P < 0.05 for both). Longest visible vessel length was found with projection SSFP (79.5 mm +/- 18.9; P < 0.05 vs. LoReIn) whereas vessel sharpness was best in inflow SSFP (68.2% +/- 4.5%; P < 0.05 vs. LoReIn). Consistently good image quality was achieved using inflow SSFP likely because of the simple planning procedure and short scanning time. CONCLUSION: Three flow targeted cMRA approaches are presented, which provide selective visualization of the coronary vessel lumen and in addition blood flow information without the need of contrast agent administration. Inflow SSFP yielded highest SNR, CNR and vessel sharpness and may prove useful as a fast and efficient approach for assessing proximal and mid vessel coronary blood flow, whereas requiring less planning skills than projection SSFP or LoReIn SSFP.
Resumo:
BACKGROUND: In patients with Kawasaki disease, serial evaluation of the distribution and size of coronary artery aneurysms (CAA) is necessary for risk stratification and therapeutic management. Although transthoracic echocardiography is often sufficient for this purpose initially, visualization of the coronary arteries becomes progressively more difficult as children grow. We sought to prospectively compare coronary magnetic resonance angiography (MRA) and x-ray coronary angiography findings in patients with CAA caused by Kawasaki disease. METHODS AND RESULTS: Six subjects (age 10 to 25 years) with known CAA from Kawasaki disease underwent coronary MRA using a free-breathing T2-prepared 3D bright blood segmented k-space gradient echo sequence with navigator gating and tracking. All patients underwent x-ray coronary angiography within a median of 75 days (range, 1 to 359 days) of coronary MRA. There was complete agreement between MRA and x-ray angiography in the detection of CAA (n=11), coronary artery stenoses (n=2), and coronary occlusions (n=2). Excellent agreement was found between the 2 techniques for detection of CAA maximal diameter (mean difference=0.4 +/- 0.6 mm) and length (mean difference=1.4 +/- 1.6 mm). The 2 methods showed very similar results for proximal coronary artery diameter (mean difference=0.2 +/- 0.5 mm) and CAA distance from the ostia (mean difference=0.1 +/- 1.5 mm). CONCLUSION: Free-breathing 3D coronary MRA accurately defines CAA in patients with Kawasaki disease. This technique may provide a non-invasive alternative when transthoracic echocardiography image quality is insufficient, thereby reducing the need for serial x-ray coronary angiography in this patient group.
Resumo:
The aim of this study was to provide an insight into normative values of the ascending aorta in regards to novel endovascular procedures using ECG-gated multi-detector CT angiography. Seventy-seven adult patients without ascending aortic abnormalities were evaluated. Measurements at relevant levels of the aortic root and ascending aorta were obtained. Diameter variations of the ascending aorta during cardiac cycle were also considered. Mean diameters (mm) were as follows: LV outflow tract 20.3 +/- 3.4, coronary sinus 34.2 +/- 4.1, sino-tubular junction 29.7 +/- 3.4 and mid ascending aorta 32.7 +/- 3.8 with coefficients of variation (CV) ranging from 12 to 17%. Mean distances (mm) were: from the plane passing through the proximal insertions of the aortic valve cusps to the right brachio-cephalic artery (BCA) 92.6 +/- 11.8, from the plane passing through the proximal insertions of the aortic valve cusps to the proximal coronary ostium 12.1 +/- 3.7, and between both coronary ostia 7.2 +/- 3.1, minimal arc of the ascending aorta from left coronary ostium to right BCA 52.9 +/- 9.5, and the fibrous continuity between the aortic valve and the anterior leaflet of the mitral valve 14.6 +/- 3.3, CV 13-43%. Mean aortic valve area was 582.0 +/- 131.9 mm(2). The variation of the antero-posterior and transverse diameters of the ascending aorta during the cardiac cycle were 8.4% and 7.3%, respectively. Results showed large inter-individual variations in diameters and distances but with limited intra-individual variations during the cardiac cycle. A personalized approach for planning endovascular devices must be considered.
Resumo:
OBJECTIVES: We assessed the clinical characteristics of patients with acute ischemic stroke (AIS) with left ventricular ejection fraction (EF) ≤ 35% and investigated the association of low EF with early and long-term outcome. METHODS: A total of 2439 patients of the Acute Stroke Registry and Analysis of Lausanne (ASTRAL) were selected. Demographics, risk factors, pre-stroke treatment, and clinical, radiological and metabolic variables in patients with and without low EF were compared. Functional independence (modified Rankin Score ≤ 2) and mortality were recorded 1 week up to 12 months from admission. RESULTS: Low EF patients (n=119) were more commonly men, older, had higher rates of coronary artery disease and atrial fibrillation (AF), and more frequent pretreatment with anticoagulants, antiplatelets and antihypertensive agents. On admission, they presented with higher stroke severity and had lower values of systolic blood pressure, higher heart rate, and worse estimated glomerular filtration rate. Stroke-related disability and death rates were higher in low EF patients during follow-up (19.5% vs. 7.8% at 1 week, and 36.1% vs. 16.5% at 12 months). Increasing age, stroke severity, and AF were independent predictors of one-year mortality in these patients while prior use of statins had a favorable effect on early mortality. CONCLUSIONS: AIS in patients with low EF is associated with older age, cardiac comorbidities, and more severe clinical presentation. Low EF can identify a subset of AIS patients at high risk of early and long-term functional disability and mortality.
Resumo:
The purpose of this study was to investigate the impact of in-plane coronary artery motion on coronary magnetic resonance angiography (MRA) and coronary MR vessel wall imaging. Free-breathing, navigator-gated, 3D-segmented k-space turbo field echo ((TFE)/echo-planar imaging (EPI)) coronary MRA and 2D fast spin-echo coronary vessel wall imaging of the right coronary artery (RCA) were performed in 15 healthy adult subjects. Images were acquired at two different diastolic time periods in each subject: 1) during a subject-specific diastasis period (in-plane velocity <4 cm/second) identified from analysis of in-plane coronary artery motion, and 2) using a diastolic trigger delay based on a previously implemented heart-rate-dependent empirical formula. RCA vessel wall imaging was only feasible with subject-specific middiastolic acquisition, while the coronary wall could not be identified with the heart-rate-dependent formula. For coronary MRA, RCA border definition was improved by 13% (P < 0.001) with the use of subject-specific trigger delay (vs. heart-rate-dependent delay). Subject-specific middiastolic image acquisition improves 3D TFE/EPI coronary MRA, and is critical for RCA vessel wall imaging.
3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition.
Resumo:
Current 2D black blood coronary vessel wall imaging suffers from a relatively limited coverage of the coronary artery tree. Hence, a 3D approach facilitating more extensive coverage would be desirable. The straightforward combination of a 3D-acquisition technique together with a dual inversion prepulse can decrease the effectiveness of the black blood preparation. To minimize artifacts from insufficiently suppressed blood signal of the nearby blood pools, and to reduce residual respiratory motion artifacts from the chest wall, a novel local inversion technique was implemented. The combination of a nonselective inversion prepulse with a 2D selective local inversion prepulse allowed for suppression of unwanted signal outside a user-defined region of interest. Among 10 subjects evaluated using a 3D-spiral readout, the local inversion pulse effectively suppressed signal from ventricular blood, myocardium, and chest wall tissue in all cases. The coronary vessel wall could be visualized within the entire imaging volume.