1000 resultados para layer silicates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an investigation of the behavior of suction surface boundary layers in a modern multistage Low Pressure turbine. An array of eighteen surface-mounted hot-film anemometers was mounted on a stator blade of the third stage of a 4-stage machine. Data were obtained at Reynolds numbers between 0.9 × 105 and 1.8 × 105 and 1.8 × 105. At the majority of the test conditions, wakes from upstream rotors periodically initiated transition at about 40% surface length. In between these events, laminar separation occurred at about 75% surface length. It is inferred that the effect of the wakes on the performance of the bladerow is limited and that steady flow design methods should provide an adequate assessment of LP turbine performance during design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an investigation of the behavior of suction surface boundary layers in a modern multistage Low-Pressure turbine. An array of 18 surface-mounted hot-film anemometers was mounted on a stator blade of the third stage of a four-stage machine. Data were obtained at Reynolds numbers between 0.9 × 105 and 1.8 × 105. At the majority of the test conditions, wakes from upstream rotors periodically initiated transition at about 40 percent surface length. In between these events, laminar separation occurred at about 75 percent surface length. Because the wake-affected part of the flow appeared to be only intermittently turbulent, laminar separation also occurred at about 75 percent surface length while this flow was instantaneously laminar. At all but the lowest Reynolds numbers, the time-mean boundary layer appeared to have re-attached by the trailing edge even though it was not fully turbulent. It is inferred that the effect of the wakes on the performance of the blade row is limited and that steady flow design methods should provide an adequate assessment of LP turbine performance during design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the effect of the state of the inlet boundary layer (laminar or turbulent) on the structure of the endwall flow on two different profiles of low-pressure (LP) turbine blades (solid thin and hollow thick). At present the state of the endwall boundary layer at the inlet of a real LP turbine is not known. The intention of this paper is to show that, for different designs of LP turbine, the state of the inlet boundary layer affects the performance of the blade in very different ways. The testing was completed at low speed in a linear cascade using area traversing, flow visualization and static pressure measurements. The paper shows that, for a laminar inlet boundary layer, the two profiles have a similar loss distribution and structure of endwall flow. However, for a turbulent inlet boundary layer the two profiles are shown to differ significantly in both the total loss and endwall flow structure. The pressure side separation bubble on the solid thin profile is shown to interact with the passage vortex, causing a higher endwall loss than that measured on the hollow thick profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments have been performed in a blowdown supersonic wind tunnel to investigate the effect of arrays of sub-boundary layer vortex generators placed upstream of a normal shock/ boundary layer interaction. The investigation makes use of a recovery shock wave and the naturally grown turbulent boundary layer on the wind tunnel floor. Experiments were performed at Mach numbers of 1.5 and 1.3 and a freestream Reynolds number of 28 × 106. Two types of vortex generators were investigated - wedge-shaped and arrays of counter-rotating vanes. It was found that at Mach 1.5 the vane-type VGs eliminated and the wedge-type VGs greatly reduced the separation bubble under the shock. When placed in the supersonic part of the flow both VGs caused a wave pattern consisting of a shock, re-expansion and shock. The re-expansion and double shocks are undesirable features since they equate to increased total pressure losses and hence increased -wave drag. Furthermore there are indications that the vortex intensity is reduced by the normal shock/ boundary layer interaction. When the shock was located directly over the VGs there was no re-expansion present, but the 'damping' effect of the shock on the vortex persisted. It appears that the vortices produced by the wedge-shaped VGs lift off the surface more rapidly. Similar results were observed at Mach 1.3, where the flow was unseparated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional bumps have been developed and investigated, aiming at the two major objectives of shock-wave / boundary-layer interaction control, i.e. drag reduction and suppression of separation, simultaneously. An experimental investigation has been conducted for a default rounded bump in channel now at University of Cambridge and a computational study has been performed for a spanwise series of rounded bumps mounted on a transonic aerofoil at University of Stuttgart. Observed in both cases are wave drag reduction owing to A-shock structures produced by three-dimensional surface bumps and mild control effects on the boundary layer. The effects of rough surface and tall extension have been investigated as well as several geometric variations and multiple bump configurations. A double configuration of narrow rounded bumps has been found to best perform amongst the tested, considerably reducing wave drag through a well-established A-shock structure with little viscous penalty and thus achieving substantial overall drag reduction. Counter-rotating streamwise vortex pairs have been produced by some configurations as a result of local flow separation, but they have been observed to be confined in relatively narrow wake regions, expected to be beneficial in suppressing large-scale separation under off-design condition despite increase of viscous drag. On the whole a large potential of three-dimensional control with discrete rounded bumps has been demonstrated both experimentally and numerically, and experimental investigation of bumps fitted on a transonic aerofoil or wing is suggested toward practical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an assessment of the performance of an embedded propulsion system in the presence of distortion associated with boundary layer ingestion. For fan pressure ratios of interest for civil transports, the benefits of boundary layer ingestion are shown to be very sensitive to the magnitude of fan and duct losses. The distortion transfer across the fan, basically the comparison of the stagnation pressure non-uniformity downstream of the fan to that upstream of the fan, has a major role in determining the impact of boundary layer ingestion on overall fuel burn. This, in turn, puts requirements on the fidelity with which one needs to assess the distortion transfer, and thus the type of models that need to be used in such assessment. For the three-dimensional distortions associated with fuselage boundary layers ingested into a subsonic diffusing inlet, it is found that boundary layer ingestion can provide decreases in fuel burn of several per cent. It is also shown that a promising avenue for mitigating the risks (aerodynamic as well as aeromechanical) in boundary layer ingestion is to mix out the flow before it reaches the engine face.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of the unsteady interaction between a turbulent boundary layer and a normal shock wave of strength M∞ = 1.4 subject to periodic forcing in a parallel walled duct has been conducted. Emphasis has been placed on the mechanism by which changes in the global flow field influence the local interaction structure. Static pressure measurements and high speed Schlieren images of the unsteady interaction have been obtained. The pressure rise across the interaction and the appearance of the local SBLI structure have been observed to vary during the cycle of periodic shock wave motion. The magnitude of the pressure rise across the interaction is found to be related to the relative Mach number of the unsteady shock wave as it undergoes periodic motion. Variations in the upstream Influence of the interaction are sensitive to the magnitude and direction of shock wave velocity and acceleration and it is proposed that a viscous lag exists between the point of boundary layer separation and the shock wave position. Further work exploring the implications of these findings is proposed, including studies of the variation in position of the points of boundary layer separation and reattachment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long term goal of our work is to enable rapid prototyping design optimization to take place on geometries of arbitrary size in a spirit of a real time computer game. In recent papers we have reported the integration of a Level Set based geometry kernel with an octree-based cut-Cartesian mesh generator, RANS flow solver and post-processing all within a single piece of software - and all implemented in parallel with commodity PC clusters as the target. This work has shown that it is possible to eliminate all serial bottlenecks from the CED Process. This paper reports further progress towards our goal; in particular we report on the generation of viscous layer meshes to bridge the body to the flow across the cut-cells. The Level Set formulation, which underpins the geometry representation, is used as a natural mechanism to allow rapid construction of conformal layer meshes. The guiding principle is to construct the mesh which most closely approximates the body but remains solvable. This apparently novel approach is described and examples given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel supersonic wind tunnel setup is proposed to enable the investigation of control on a normal shock wave. Previous experimental arrangements were found to suffer from shock instability. Wind tunnel tests with and without control have confirmed the capability of the new setup to stabilise a shock structure at a target position without changing the nature of the shock wave / boundary layer interaction flow at M∞ = 1.3 and M ∞ = 1.5. Flow visualisation and pressure measurements with the new setup have revealed detailed characteristics of shock wave / boundary layer interactions and a λ-shock structure as well as benefits of control in total drag reduction in the presence of 3D bump control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data collected during cruises of the Hoyo Maru in Jan-Mar 1975 are analysed. Data is tabulated to show vertical temp profile, surface water temp and temp gradient. Each of these features is discussed. Thermoclines are shown to be established off the coast of India, their depth varying according to time of year. Upwelling off the Cochin coast is discussed. This occurs during Oct-Nov. Surface temp is considerably influenced by the north-east monsoon. The 'clockwise current' (or 'transparent current) characterised by high salinity, high transparency, and rich nutrient conchs, and which prevails in Jan-May brings oceanic water into the Bay of Bengal and sweeps along the Ceylon coast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supersonic engine intakes operating supercritically feature shock wave / boundary layer interactions (SBLIs), which are conventionally controlled using boundary layer bleed. The momentum loss of bleed flow causes high drag, compromising intake performance. Micro-ramp sub-boundary layer vortex generators (SBVGs) have been proposed as an alternative form of flow control for oblique SBLIs in order to reduce the bleed requirement. Experiments have been conducted at Mach 2.5 to characterise the flow details on such devices and investigate their ability to control the interaction between an oblique shock wave and the naturally grown turbulent boundary layer on the tunnel floor. Micro-ramps of four sizes with heights ranging from 25% to 75% of the uncontrolled boundary layer thickness were tested. The flow over all sizes of microramp was found to be similar, featuring streamwise counter-rotating vortices which entrain high momentum fluid, locally reducing the boundary layer displacement thickness. When installed ahead of the shock interaction it was found that the positioning of the micro-ramps is of limited importance. Micro-ramps did not eliminate flow separation. However, the previously two-dimensional separation was broken up into periodic three-dimensional separation zones. The interaction length was reduced and the pressure gradient across the interaction was increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.