913 resultados para just in time
Resumo:
The supposed rise of inequality in income and wealth is a much-discussed issue. Since in a number of industrialized countries a trend towards more inequality was observed over the last decades, it is often assumed that Switzerland has experienced a similar development. Yet, although a variety of studies exists that provide inequality estimates for the Swiss society at different points in time, no conclusive picture of the changes in inequality can be drawn from these studies. For example, recent estimates by the Swiss Federal Statistical Office indicate that – against expectations – inequality in disposable equivalent-incomes has not risen since the end of the 1990ies, whereas other studies indicate that earnings from employment – especially top salaries – have become more unequal. The reasons for the inconclusive picture are manifold. For example, trends might have been different for different income types and results might strongly depend on the quality of the used data. To close the knowledge gap in inequality research in Switzerland a new Swiss National Science Foundation project by the University of Bern and the Bern University of Applied Sciences has been started in 2013. Individual tax data from cantons will be analyzed along with aggregate data from the Swiss Federal Tax Administration, covering a period from the early 1970ies to the present. The goal is to gain a systematic overview of the development of inequality in income and wealth in Switzerland as a whole and within cantons, and to determine how changes can be explained. In our talk we will present first results from this project.
Resumo:
Intensive Family Preservation Services seek to reflect the values of focusing on client strengths and viewing clients as colleagues. To promote those values, Intensive Family Preservation Programs should include a systematic form of client self monitoring in their packages of outcome measures. This paper presents a model of idiographic self-monitoring used in time series, single system research design developed for Family Partners, a family preservation program of the School for Contemporary Education in Annandale, Virginia. The evaluation model provides a means of empowering client families to utilize their strengths and promote their status as colleague in determining their own goals, participating in the change process, and measuring their own progress.
Resumo:
This dissertation addresses the risk of lung cancer associated with occupational exposures in the petroleum refining and petrochemical industries. Earlier epidemiologic studies of this association did not adjust for cigarette smoking or have specific exposure classifications. The Texas EXposure Assessment System (TEXAS) was developed with data from a population-based, case-comparison study conducted in five southeast Texas counties between 1976 and 1980. The Texas Exposure Assessment System uses job and process categories developed by the American Petroleum Institute, as well as time-oriented variables to identify high risk groups.^ An industry-wide, increased risk for lung cancer was associated with jobs having low-level hydrocarbon exposure that also include other occupational inhalation exposures (OR = 2.0--adjusted for smoking and latency effects). The prohibition of cigarette smoking for jobs with high-level hydrocarbon exposure might explain part of the increased risk for jobs with low-level hydrocarbon exposures. Asbestos exposure comprises a large part of the risk associated with jobs having other inhalation exposures besides hydrocarbons. Workers in petroleum refineries were not shown to have an increased, occupational risk for lung cancer. The increased risk for lung cancer among petrochemical workers (OR = 3.1--smoking and latency adjusted) is associated with all jobs that involve other inhalation exposure characteristics (not only low-level hydrocarbon exposures). Findings for contract workers and workers exposed to specific chemicals were inconclusive although some hypotheses for future research were identified.^ The study results demonstrate that the predominant risk for lung cancer is due to cigarette smoking (OR = 9.8). Cigarette smoking accounts for 86.5% of the incident lung cancer cases within the study area. Workers in the petroleum industry smoke significantly less than persons employed in other industries (p << 0.001). Only 2.2% of the incident lung cancer cases may be attributed to petroleum industry jobs; lifestyle factors (e.g., nutrition) may be associated with the balance of the cases. The results from this study also suggest possible high risk time periods (OR = 3.9--smoking and occupation adjusted). Artifacts in time-oriented findings may result because of the latency interval for lung cancer, secular peaks in age-, sex-specific incidence rates, or periods of hazardous exposures in the petroleum industry. ^
Modelling the effects of land use and climate changes on hydrology in the Ursern Valley, Switzerland
Resumo:
While many studies have been conducted in mountainous catchments to examine the impact of climate change on hydrology, the interactions between climate changes and land use components have largely unknown impacts on hydrology in alpine regions. They need to be given special attention in order to devise possible strategies concerning general development in these regions. Thus, the main aim was to examine the impact of land use (i.e. bushland expansion) and climate changes (i.e. increase of temperature) on hydrology by model simulations. For this purpose, the physically based WaSiM-ETH model was applied to the catchment of Ursern Valley in the central Alps (191 km2) over the period of 1983−2005. Modelling results showed that the reduction of the mean monthly discharge during the summer period is due primarily to the retreat of snow discharge in time and secondarily to the reduction in the glacier surface area together with its retreat in time, rather than the increase in the evapotranspiration due to the expansion of the “green alder” on the expense of grassland. The significant decrease in summer discharge during July, August and September shows a change in the regime from b-glacio-nival to nivo-glacial. These changes are confirmed by the modeling results that attest to a temporal shift in snowmelt and glacier discharge towards earlier in the year: March, April and May for snowmelt and May and June for glacier discharge. It is expected that the yearly total discharge due to the land use changes will be reduced by 0.6% in the near future, whereas, it will be reduced by about 5% if climate change is also taken into account. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
In the California Current System, strong mesoscale variability associated with eddies and meanders of the coastal jet play an important role in the biological productivity of the area. To assess the dominant timescales of variability, a wavelet analysis is applied to almost nine years (October 1997 to July 2006) of 1-km-resolution, 5-day-averaged, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll a (chl a) concentration data. The dominant periods of chlorophyll variance, and how these change in time, are quantified as a function of distance offshore. The maximum variance in chlorophyll occurs with a period of similar to 100-200 days. A seasonal cycle in the timing of peak variance is revealed, with maxima in spring/summer close to shore (20 km) and in autumn/winter 200 km offshore. Interannual variability in the magnitude of chlorophyll variance shows maxima in 1999, 2001, 2002, and 2005. There is a very strong out-of-phase correspondence between the time series of chlorophyll variance and the Pacific Decadal Oscillation (PDO) index. We hypothesize that positive PDO conditions, which reflect weak winds and poor upwelling conditions, result in reduced mesoscale variability in the coastal region, and a subsequent decrease in chlorophyll variance. Although the chlorophyll variance responds to basin-scale forcing, chlorophyll biomass does not necessarily correspond to the phase of the PDO, suggesting that it is influenced more by local-scale processes. The mesoscale variability in the system may be as important as the chl a biomass in determining the potential productivity of higher trophic levels.
Resumo:
Zusammenfassung. In der vorliegenden Studie wird der Frage nachgegangen, ob sich zwischen beliebten, durchschnittlichen, unbeachteten und zurückgewiesenen Kindern Unterschiede in spezifischen kognitiven und motorischen Fähigkeiten finden lassen. Zu drei verschiedenen Zeitpunkten wurden mit 177 regulär eingeschulten 7-jährigen Kindern Peernominationen und Peerratings erhoben, um reliable soziometrische Daten zu erhalten und ein Vergleich der beiden Methoden vorzunehmen. Außerdem wurde eine umfassende Testbatterie von insgesamt 20 Aufgaben in den Bereichen Informationsverarbeitungsgeschwindigkeit, Kurzzeit- und Arbeitsgedächtnis, Inhibition, Sprache und Motorik durchgeführt. Mit Ausnahme der Kurzzeitgedächtniskapazität wurden für alle Funktionsbereiche signifikante Unterschiede zwischen den Statusgruppen gefunden. Die kontinuierlichen soziometrischen Werte der Ratingmethode zeigten sich etwas sensitiver als die der Nominationsmethode. Korrelativ wurde mit beiden Methoden ersichtlich, dass bessere Leistungen im kognitiven und motorischen Bereich nicht nur mit mehr Beliebtheit zusammenhingen, sondern auch, dass schlechte Leistungen in Verbindung standen mit sozialer Zurückweisung. Abstract. In the present study, it was investigated whether popular, average, neglected, and rejected children differ with respect to specific cognitive and motor skills. Peer nomination and peer rating methods were used at three different points in time to obtain reliable sociometric data of 177 regularly enrolled 7-year-old children and to compare the two methods. Furthermore, a battery comprising 21 tasks was used to assess speed of information processing, short-term and working memory, inhibition, language, and motor skills. Significant differences were found between children of different status groups with respect to all studied abilities with the exception of short-term memory. The continuous sociometric scores of the rating method resulted to be slightly more sensitive than those obtained with the nomination method. However, correlative analyses with both methods showed that better performance on the cognitive and motor tasks was associated with popularity, whereas worse performance was related to social rejection.
Resumo:
Assessing temporal variations in soil water flow is important, especially at the hillslope scale, to identify mechanisms of runoff and flood generation and pathways for nutrients and pollutants in soils. While surface processes are well considered and parameterized, the assessment of subsurface processes at the hillslope scale is still challenging since measurement of hydrological pathways is connected to high efforts in time, money and personnel work. The latter might not even be possible in alpine environments with harsh winter processes. Soil water stable isotope profiles may offer a time-integrating fingerprint of subsurface water pathways. In this study, we investigated the suitability of soil water stable isotope (d18O) depth profiles to identify water flow paths along two transects of steep subalpine hillslopes in the Swiss Alps. We applied a one-dimensional advection–dispersion model using d18O values of precipitation (ranging from _24.7 to _2.9‰) as input data to simulate the d18O profiles of soil water. The variability of d18O values with depth within each soil profile and a comparison of the simulated and measured d18O profiles were used to infer information about subsurface hydrological pathways. The temporal pattern of d18O in precipitation was found in several profiles, ranging from _14.5 to _4.0‰. This suggests that vertical percolation plays an important role even at slope angles of up to 46_. Lateral subsurface flow and/or mixing of soil water at lower slope angles might occur in deeper soil layers and at sites near a small stream. The difference between several observed and simulated d18O profiles revealed spatially highly variable infiltration patterns during the snowmelt periods: The d18O value of snow (_17.7 ± 1.9‰) was absent in several measured d18O profiles but present in the respective simulated d18O profiles. This indicated overland flow and/or preferential flow through the soil profile during the melt period. The applied methods proved to be a fast and promising tool to obtain time-integrated information on soil water flow paths at the hillslope scale in steep subalpine slopes.
Resumo:
The most influential theoretical account in time psychophysics assumes the existence of a unitary internal clock based on neural counting. The distinct timing hypothesis, on the other hand, suggests an automatic timing mechanism for processing of durations in the sub-second range and a cognitively controlled timing mechanism for processing of durations in the range of seconds. Although several psychophysical approaches can be applied for identifying the internal structure of interval timing in the second and sub-second range, the existing data provide a puzzling picture of rather inconsistent results. In the present chapter, we introduce confirmatory factor analysis (CFA) to further elucidate the internal structure of interval timing performance in the sub-second and second range. More specifically, we investigated whether CFA would rather support the notion of a unitary timing mechanism or of distinct timing mechanisms underlying interval timing in the sub-second and second range, respectively. The assumption of two distinct timing mechanisms which are completely independent of each other was not supported by our data. The model assuming a unitary timing mechanism underlying interval timing in both the sub-second and second range fitted the empirical data much better. Eventually, we also tested a third model assuming two distinct, but functionally related mechanisms. The correlation between the two latent variables representing the hypothesized timing mechanisms was rather high and comparison of fit indices indicated that the assumption of two associated timing mechanisms described the observed data better than only one latent variable. Models are discussed in the light of the existing psychophysical and neurophysiological data.
Resumo:
Emerging adulthood is a time of instability. This longitudinal study investigated the relationship between mental health and need satisfaction among emerging adults over a period of five years and focused on gender-specific differences. Two possible causal models were examined: (1) the mental health model, which predicts that incongruence is due to the presence of impaired mental health at an earlier point in time; (2) the consistency model, which predicts that impaired mental health is due to a higher level of incongruence reported at an earlier point in time. Emerging adults (N = 1,017) aged 18–24 completed computer-assisted telephone interviews in 2003 (T1), 2005 (T2), and 2008 (T3). The results indicate that better mental health at T1 predicts a lower level of incongruence two years later (T2), when prior level of incongruence is controlled for. The same cross-lagged effect is shown for T3. However, the cross-lagged paths from incongruence to mental health are marginally associated when prior mental health is controlled for. No gender differences were found in the cross-lagged model. The results support the mental health model and show that incongruence does not have a long-lasting negative effect on mental health. The results highlight the importance of identifying emerging adults with poor mental health early to provide support regarding need satisfaction.
Resumo:
Freely available software has popularized “mousetracking” to study cognitive processing; this involves the on-line recording of cursor positions while participants move a computer mouse to indicate their choice. Movement trajectories of the cursor can then be reconstructed off-line to assess the efficiency of responding in time and across space. Here we focus on the process of selecting among alternative numerical responses. Several studies have recently measured the mathematical mind with cursor movements while people decided about number magnitude or parity, computed sums or differences, or simply located numbers on a number line. After some general methodological considerations about mouse tracking we discuss several conceptual concerns that become particularly evident when “mousing” the mathematical mind.
Resumo:
Purpose: Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue. Methods: Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application. Results: Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyperreflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy. Conclusions: Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our exvivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.
Resumo:
During time-resolved optical stimulation experiments (TR-OSL), one uses short light pulses to separate the stimulation and emission of luminescence in time. Experimental TR-OSL results show that the luminescence lifetime in quartz of sedimentary origin is independent of annealing temperature below 500 °C, but decreases monotonically thereafter. These results have been interpreted previously empirically on the basis of the existence of two separate luminescence centers LH and LL in quartz, each with its own distinct luminescence lifetime. Additional experimental evidence also supports the presence of a non-luminescent hole reservoir R, which plays a critical role in the predose effect in this material. This paper extends a recently published analytical model for thermal quenching in quartz, to include the two luminescence centers LH and LL, as well as the hole reservoir R. The new extended model involves localized electronic transitions between energy states within the two luminescence centers, and is described by a system of differential equations based on the Mott–Seitz mechanism of thermal quenching. It is shown that by using simplifying physical assumptions, one can obtain analytical solutions for the intensity of the light during a TR-OSL experiment carried out with previously annealed samples. These analytical expressions are found to be in good agreement with the numerical solutions of the equations. The results from the model are shown to be in quantitative agreement with published experimental data for commercially available quartz samples. Specifically the model describes the variation of the luminescence lifetimes with (a) annealing temperatures between room temperature and 900 °C, and (b) with stimulation temperatures between 20 and 200 °C. This paper also reports new radioluminescence (RL) measurements carried out using the same commercially available quartz samples. Gaussian deconvolution of the RL emission spectra was carried out using a total of seven emission bands between 1.5 and 4.5 eV, and the behavior of these bands was examined as a function of the annealing temperature. An emission band at ∼3.44 eV (360 nm) was found to be strongly enhanced when the annealing temperature was increased to 500 °C, and this band underwent a significant reduction in intensity with further increase in temperature. Furthermore, a new emission band at ∼3.73 eV (330 nm) became apparent for annealing temperatures in the range 600–700 °C. These new experimental results are discussed within the context of the model presented in this paper.
Resumo:
Air was sampled from the porous firn layer at the NEEM site in Northern Greenland. We use an ensemble of ten reference tracers of known atmospheric history to characterise the transport properties of the site. By analysing uncertainties in both data and the reference gas atmospheric histories, we can objectively assign weights to each of the gases used for the depth-diffusivity reconstruction. We define an objective root mean square criterion that is minimised in the model tuning procedure. Each tracer constrains the firn profile differently through its unique atmospheric history and free air diffusivity, making our multiple-tracer characterisation method a clear improvement over the commonly used single-tracer tuning. Six firn air transport models are tuned to the NEEM site; all models successfully reproduce the data within a 1σ Gaussian distribution. A comparison between two replicate boreholes drilled 64 m apart shows differences in measured mixing ratio profiles that exceed the experimental error. We find evidence that diffusivity does not vanish completely in the lock-in zone, as is commonly assumed. The ice age- gas age difference (1 age) at the firn-ice transition is calculated to be 182+3−9 yr. We further present the first intercomparison study of firn air models, where we introduce diagnostic scenarios designed to probe specific aspects of the model physics. Our results show that there are major differences in the way the models handle advective transport. Furthermore, diffusive fractionation of isotopes in the firn is poorly constrained by the models, which has consequences for attempts to reconstruct the isotopic composition of trace gases back in time using firn air and ice core records.
Resumo:
Purpose: Selective retina therapy (SRT) is a novel treatment for retinal pathologies, solely targeting the retinal pigment epithelium (RPE). During SRT, the detection of an immediate tissue reaction is challenging as tissue effects remain limited to intracellular RPE photodisruption. Time-resolved ultra-high axial resolution optical coherence tomography (OCT) is thus evaluated for the monitoring of dynamic optical changes at and around the RPE during SRT. Methods: An experimental OCT system with an ultra-high axial resolution of 1.78 µm was combined with an SRT system and time-resolved OCT M-scans of the target area were recorded from four patients undergoing SRT. OCT scans were analyzed and OCT morphology was correlated with findings in fluorescein angiography, fundus photography and cross-sectional OCT. Results: In cases where the irradiation caused RPE damage proven by fluorescein angiography, the lesions were well discernible in time-resolved OCT images but remained invisible in fundus photography and cross-sectional OCT acquired after treatment. If RPE damage was introduced, all applied SRT pulses led to detectable signal changes in the time-resolved OCT images. The extent of optical signal variation seen in the OCT data appeared to scale with the applied SRT pulse energy. Conclusion: The first clinical results proved that successful SRT irradiation induces detectable changes in the OCT M-scan signal while it remains invisible in conventional ophthalmoscopic imaging. Thus, real-time high-resolution OCT is a promising modality to monitor and analyze tissue effects introduced by selective retina therapy and may be used to guide SRT in an automatic feedback mode.
Resumo:
OBJECTIVE Short implants are increasingly used, but there is doubt about their performance being similar to that of regular implants. The aim of this study was to compare the mechanical stability of short implants vs. regular implants placed in the edentulous posterior mandible. MATERIAL AND METHODS Twenty-three patients received a total of 48 short implants (5 × 5.5 mm and 5 × 7 mm) and 42 regular implants (4 × 10 mm and 4 × 11.5 mm) in the posterior mandible. Patients who received short implants had <10 mm of bone height measured from the bone crest to the outer wall of the mandibular canal. Resonance frequency analysis (RFA) was performed at time intervals T0 (immediately after implant placement), T1 (after 15 days), T2 (after 30 days), T3 (after 60 days), and T4 (after 90 days). RESULTS The survival rate after 90 days was 87.5% for the short implants and 100% for regular implants (P < 0.05). There was no significant difference between the implants in time intervals T1, T2, T3, and T4. In T0, the RFA values of 5 × 5.5 implants were higher than values of 5 × 7 and 4 × 11.5 implants (P < 0.05). A total of six short implants that were placed in four patients were lost (three of 5 × 5.5 mm and three of 5 × 7 mm). Three lost implants started with high ISQ values, which progressively decreased. The other three lost implants started with a slightly lower ISQ value, which rose and then began to fall. CONCLUSIONS Survival rate of short implants after 90 days was lower than that of regular implants. However, short implants may be considered a reasonable alternative for rehabilitation of severely resorbed mandibles with reduced height, to avoid performing bone reconstruction before implant placement. Patients need to be aware of the reduced survival rate compared with regular implants before implant placement to avoid disappointments.