971 resultados para irradiance caching
Resumo:
The effect of iron-ore particles on the propagule release and growth of Sargassum vulgare C. Agardh was tested under treatments with different concentrations of iron-ore particles: 0.1, 1.0, 10.0 g.L-1 and a solution of 10.0 g.L-1 of filtered iron-ore. Filtered seawater was used as control. Photosynthesis vs. irradiance (P-I) curves were calculated for S. vulgare in the presence of iron-ore and in seawater. There was no significant difference in the number of propagules released by the receptacles or in the percentage of zygote formation among the treatments. The released propagules acted like aggregation centers for the particles, those more heavily coated with iron (10.0 g.L-1) exhibiting the highest sinking velocity (32.6 ± 9.8 mm.s-1). No difference in the percentage of embryo survival was detected during the first week in culture. After four weeks the embryos grew in all treatments. Maximum frond development (5.3 ± 0.8 mm) was observed in treatment of seawater enriched with Provasoli's medium (PES) while initial filoids did not develop in three treatments without PES and with iron-ore (0.1 g.L-1, 1.0 g.L-1 and 10.0 g.L-1). The values for Pmax, alpha and respiration showed no significant differences between the P-I curves. The calculated value for I K was 106.26 µmol.m-2.s-1 to the control curve and 981.49 µmol.m-2.s-1 to the iron-ore curve. The results indicate that the iron-ore particles in high concentration reduce the growth of S. vulgare as they recovered the embryos, juveniles and young plants. In contrast, the presence of the particles did not affect the release of gametes, percentage of zygote formation or the percentage of embryo survival.
Resumo:
Temporal dynamics of the chaetophoracean green algae Chaetophora elegans (Roth) C.A. Agardh and Stigeoclonium amoenum Kützing populations was investigated biweekly during late autumn trhough early spring (April to October) in two tropical streams from northwestern São Paulo State, southeastern Brazil. Abundances of one population of each species was evaluated by the quadrat technique in terms of percent cover and frequency. The fluctuations were related to the following stream variables: temperature, turbidity, specific conductance, pH, oxygen saturation, depth, substratum type, current velocity, irradiance and nutrients. Percent cover and frequency of C. elegans had lower values throughout the study period and was positively correlated to rainfall. Other correlations (i.e. positive of percent cover with depth and current velocity and negative with irradiance) were consistently found, reinforcing the strong influence of rainfall. On the other hand, percent cover and frequency of S. amoenum had higher values, with maximum growth from June to September. Percent cover was negatively correlated to rainfall. Results suggest the precipitation regime as the most important driving force to temporal changes in both populations, but playing different roles in each one. The gelatinous thallus of C. elegans seem to be favored by the increment of current velocity, since higher flows can improve the nutrient uptake by means of reduction in diffusion shell without promoting excessive drag force. In contrast, tufts of S. amoenum are, presumably, more exposed to drag force, and, consequently, more susceptible to mechanical damage effects due to higher current velocities.
Resumo:
Hypoglossum hypoglossoides (Stackhouse) Collins & Hervey is reported for the first time from the infralittoral of São Paulo and Santa Catarina states. The species was already reported to the states of Rio de Janeiro, Espírito Santo and Bahia as Hypoglossum tenuifolium (Harvey) J. Agardh var. carolinianum Williams. A detailed description of the morphology and reproduction is given based on field-collected material. Unialgal cultures were initiated from tetraspore germination, and growth rates of gametophytes were determined under different conditions of temperature, photoperiod and irradiance. Gametophytes grew well between 15 to 30 ºC, 14L:10D and 10L:14D photoperiods and irradiance from 20 to 120 µmol photons.m-2.s-1, but presented low percentage of fertile plants in low temperature (15 ºC). Gametophytes cultured in laboratory developed only male reproductive structures. Physiological responses of H. hypoglossoides indicate that the species is well adapted to temperature and light variations which could explain its range of vertical (6-26 m depth) and latitudinal distribution (from Fernando de Noronha to Santa Catarina) as well as the absence of sexual reproduction in the southern limit of its distribution.
Resumo:
Lamium album accumulates starch, sucrose and raffinose-family oligosaccharides (RFO) as the major products of photosynthesis. These products were measured in leaves throughout a sixteen-hour photoperiod and under various irradiance conditions. There was continuous accumulation of sucrose and starch. The rate of gas exchange was higher at 500 µEm² s-1 and 900 µEm²s-1 than at 300 µEm² s-1. The rate of photosynthesis did not decline over the sixteen-hour photoperiod, which suggested that there was no short-term feed back inhibition due to sucrose accumulation in this plant. When the products of photosynthesis were compared at the end of the photoperiod, only sucrose increased in abundance at high irradiance. The RFO pool in leaves was shown to contain raffinose, stachyose and verbascose; galactinol was also present. 14CO2 feeding demonstrated that roots and flowers were the major sinks. The middle leaves were major source leaves whilst young leaves acted as both sources and sinks.
Resumo:
Gracilaria cornea J. Agardh is an important agarophyte occurring in the western Atlantic Ocean. Green colour individuals of G. cornea were found in a natural population, growing next to red individuals, which were more common. Due to the importance of colour strains in genetic and intraspecific variability studies, this work aimed to characterize the red and green strains evaluating different nutritional and light conditions. Red and green gametophytes were cultivated at 14:10 light: dark cycle, with alternating aeration periods of 30 min. Two different enriched solutions were tested: von Stosch (VSS) at concentrations reduced to 12.5% and 25%; and Provasoli (PES) at concentrations reduced to 25% and 50%, and 100%. Red and green gametophytes were cultivated at the irradiance of 45 mumol photons m-2 s-1. In another experiment utilizing PES 100%, two sources of light (Osram 40 W daylight fluorescent tubes and Sylvania Designer 3,500 tubes) were tested at irradiances of 90 and 180 mumol photons m-2 s-1. Growth rates (GR) were evaluated for five weeks. Gametophytes developed few branches and reproductive structures were not induced. Differences were not observed between GR of red and green strains in the conditions tested. GR were higher in VSS 12.5% (8.4% day-1) than in 25% (7.1% day-1), suggesting an adaptation of the species to low nutrient concentrations. GR were higher at 180 (9.0% day-1) than at 90 mumol photons m-2 s-1 (6.3% day-1). These results suggest that G. cornea should be cultivated in laboratory at high irradiances and low nutrient concentrations. These data will be useful in future genetic and physiological studies of the species.
Resumo:
Erythroxylum ovalifolium is a woody shrub widespread in the "restinga", i.e. the open scrub vegetation of the Brazilian coastal sandy plains. We examined leaf anatomy variation of this species both within populations and between populations of three "restingas" in the state of Rio de Janeiro. Sites were ca.100 km far from each other and differed in regard to rainfall and vegetation structure: a dry, open site; a wet, dense site and an intermediate one. Microhabitats within sites were: (i) exposed to full irradiance, outside vegetation islands; (ii) partially exposed to full irradiance, at the border of vegetation islands; (iii) shaded, inside vegetation islands. Leaf anatomy parameters were measured for five leaves collected in each of five plants per microhabitat, in each population; they were thickness of the leaf blade, of the palisade and spongy parenchyma, and of the adaxial and abaxial epidermis. Leaves from the dry, open site had narrower abaxial epidermis and a smaller contribution of spongy parenchyma to total leaf blade thickeness than the other two sites, which we attributed to water stress. Adaxial epidermis and leaf are thicker in more exposed microhabitats (i and ii, above), irrespective of site. We proposed that between-site anatomical variation in traits related to water stress, and within-site anatomical variation in traits related to light-use are indicative of ecological plasticity and might help explain the high abundance of E. ovalifolium in the studied populations and along the State of Rio de Janeiro coast.
Resumo:
Lianas are plants that depend on support to reach some appreciable height, and they represent an important structural component of tropical forests. Although they predominate in clearings and gaps, some species survive in the understory. Changes in irradiance between these environments can affect leaf morphology and absorption of photosynthetic active radiation (PAR). We had examined the effects of different light regimes on leaf optical properties, chlorophyll content, specific leaf area, and leaf surface morphology in young seedlings of Canavalia parviflora Benth. (Fabaceae) and Gouania virgata Reissk (Rhamnaceae). The seedlings were distributed on workbenches covered by different layers of neutral shade netting, thus creating three levels of light intensity corresponding to about 40%, 10% and 1.5% of solar irradiance. Plants growing in full sun were used as a control. Both species exhibited an increase in reflectance in full sun and alterations in leaf morphology. Reduction in irradiance induced an increase in absorptance (decrease in reflectance and transmittance) in C. parviflora leaves in the green due to higher chlorophyll content. In G. virgata the spectral leaf changes were less observable. However, the efficiency of absorption was more pronounced in G. virgata than in C. parviflora leaves under 40%, 10% and 1.5% photon flux density (PFD). The greater efficiency of absorption in G. virgata was due to a larger specific leaf area (SLA) under these conditions. The adjustments in leaf optical properties can aid these species in overall carbon gain under limited light conditions.
Resumo:
Shallow coastal areas are dynamic habitats that are affected by a variety of abiotic and biotic factors. In addition to the natural environmental stress, estuarine and coastal seagrass ecosystems are exposed to effects of climate change and other anthropogenic impacts. In this thesis the effect of different abiotic (shading stress, salinity and temperature) and biotic stressors (presence of co-occurring species) and different levels and combinations of stressors on the performance and survival of eelgrass (Zostera marina) was assessed. To investigate the importance of scale for stress responses, varying levels of biological organization (genotype, life stage, population and plant community) were studied in field and aquarium experiments. Light limitation, decreased salinity and increased temperature affected eelgrass performance negatively in papers I, II and III, respectively. While co-occurring plant species had no notable effect on eelgrass in paper IV, the presence of eelgrass increased the biomass of Potamogeton perfoliatus. The findings in papers II and III confirmed that more extreme levels of salinity and temperature had stronger impacts on plant performance compared to intermediate levels, but intermediate levels also had more severe effects on plants when they were exposed to several stressors, as illustrated in paper II. Thus, multiple stressors had negative synergetic effects. The results in papers I, II and III indicate that future changes in light climate, salinity and temperature can have serious impacts on eelgrass performance and survival. Stress responses were found to vary among genotypes, life stages and populations in papers I, II and III, respectively, emphasizing the importance of study scale. The results demonstrate that while stress in general affects seagrass productivity negatively, the severity of effects can vary substantially depending on the studied scale or level of biological organization. Eelgrass genotypes can differ in their stress and recovery processes, as observed in paper I. In paper II, eelgrass seedlings were less prone to abiotic stress compared to adult plants, but stress also decreased their survival considerably. This indicates that recruitment and re-colonization through seeds might be threatened in the future. Variation among population responses observed in paper III indicates that long-term local adaptation under differing selection pressures has caused divergence in salinity tolerance between Baltic eelgrass populations. This variability in stress tolerance observed in papers I and III suggests that some eelgrass genotypes and populations have a better capacity to adapt to changes and survive in a changing environment. Multiple stressors and biological level-specific responses demonstrate the uncertainty in predicting eelgrass responses in a changing environment. As eelgrass populations may differ in their stress tolerance both within and across regions, conservation strategies at both local and regional scales are urgently needed in order to ensure the survival of these important ecosystems.
Resumo:
Photosynthetic performance of distinct marine macroalgae, Ulva fasciata Delile (green alga), Lobophora variegata (J. V. Lamouroux) Womersley ex E. C. Oliveira (brown alga), and Plocamium brasiliensis (Greville) M. A. Howe & W. R. Taylor (red alga), were compared using a pulse amplitude-modulated fluorometer. The maximum quantum yield (Fv/Fm) ranged from 0.80 to 0.51, and the lowest value was found in P. brasiliensis. Under 400 µmol photons m-2 s-1 irradiance, the highest value of photochemical quenching (qP = 0.92 ± 0.13) was observed for U. fasciata. The red alga P. brasiliensis dissipated high amounts of excitation energy (qN = 0.56 ± 0.09), resulting in relatively low values for the effective quantum yield of PS-II (0.23 ± 0.04), as well as for the relative electron transport rate (3.3 ± 0.7). The high photosynthetic potential found for U. fasciata partially explains the species ability for rapid growth and high productivity.
Resumo:
We examined the relationships between environmental variations in lotic ecosystems with the seasonal dynamics of macroalgae communities at different spatial scales: drainage basin of two rivers (Rio das Pedras and Rio Marrecas), shading (open and shaded stream segments), mesohabitat (riffles and pools), and microhabitats. Data collections were made on a monthly basis between January and December/2007. A total of 16 taxa were encountered (13 species and 3 vegetative groups). All of the biotic parameters (richness, abundance, diversity, equitability, and dominance) were found to be highly variable at all of the spatial scales evaluated. On the other hand, abiotic variables demonstrated differences only at mesohabitat (in terms of current velocity) and shaded habitat (in terms of irradiance) scales. The seasonality of the macroalgae community structure was strongly influenced by microhabitat variables (current velocity, substrate H', and irradiance), demonstrating their importance over time and at different scales. Regional variables (temperature, oxygen saturation, specific conductance, pH, and turbidity) were found to have little influence on the temporal dynamics of the macroalgae communities evaluated.
Resumo:
The diversity of algal banks composed of species out the genera Gracilaria Greville and Hypnea J.V. Lamouroux have been impacted by commercial exploitation and coastal eutrophication. The present study sought to construct dynamic models based on algal physiology to simulate seasonal variations in the biomasses of Gracilaria and Hypnea an intertidal reef at Piedade Beach in Jaboatão dos Guararapes, Pernambuco State, Brazil. Five 20 × 20 cm plots in a reef pool on a midlittoral reef platform were randomly sampled during April, June, August, October, and December/2009 and in January and March/2010. Water temperature, pH, irradiance, oxygen and salinity levels as well as the concentrations of ammonia, nitrate and phosphate were measured at the sampling site. Forcing functions were employed in the model to represent abiotic factors, and algal decay was simulated with a dispersal function. Algal growth was modeled using a logistic function and was found to be sensitive to temperature and salinity. Maximum absorption rates of ammonia and phosphate were higher in Hypnea than in Gracilaria, indicating that the former takes up nutrients more efficiently at higher concentrations. Gracilaria biomass peaked at approximately 120 g (dry weight m-2) in March/2010 and was significantly lower in August/2009; Hypnea biomasses, on the other hand, did not show any significant variations among the different months, indicating that resource competition may influence the productivity of these algae.
Resumo:
Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.
Resumo:
In biotechnological processes, the culture media components are responsible for high costs and exert a strong influence on the cyanobacteria behavior. The objective of this study was to evaluate the Arthrospira platensis growth potential for biomass production under different cultivation conditions using an experimental design. Three factors that are important for cyanobacteria growth were evaluated: sodium bicarbonate (9 to 18 g/l), sodium nitrate (1.25 to 2.5 g/l), and irradiance (20 to 120 µmol photons/m2.s–1). The results showed that the concentration of NaNO3 in the A. platensis medium can be reduced, resulting in increased concentrations of biomass produced. There was a higher biomass production due to the increase in the concentration of NaHCO3 and irradiance, mainly when these two factors varied tending towards the highest values studied. The results demonstrate the potential to produce Arthrospira platensis with lower costs and effluent generation without affecting cultivation performance.
Resumo:
There has been an increase in investment in research on new sources of natural pigments for food application. Some cyanobacteria can change the structures responsible for light harvesting and cellular processes according to the wavelength and light intensity. This phenomenon has been described as complementary chromatic adaptation. The present study aimed to investigate the growth of Arthrospira platensis using different light qualities, irradiance, and wavelength by evaluating the production of biomass, proteins, and phycobiliproteins. The occurrence of the chromatic adaptation phenomenon in this cyanobacterium was also investigated. The microorganism used in this study, A. platensis, was grown in a Zarrouk medium under three irradiance levels, 50, 100, and 150 μmol fotons.m–2.s–1 with illumination provided by white and green fluorescent lamps. The condition of 150 µmol fotons.m–2.s–1 white light was the one that promoted the highest biomass production of A. platensis cultures (2115.24 mg.L–1). There was no difference in the production of total protein and total phycobiliproteins under the studied conditions. It is likely that the large supply of nitrogen in the Zarrouk medium was sufficient for cell growth and maintenance, and it supplied the production of accessory pigments composed of protein. Finally, there was no evidence of the complementary chromatic adaptation phenomenon in A. platensis cultivated under green light. Moreover, this condition did not increase phycocyanin production.
Resumo:
The underwater light field is an important environmental variable as it, among other things, enables aquatic primary production. Although the portion of solar radiation that is referred to as visible light penetrates water, it is restricted to a limited surface water layer because of efficient absorption and scattering processes. Based on the varying content of optical constituents in the water, the efficiency of light attenuation changes in many dimensions and over various spatial and temporal scales. This thesis discusses the underwater light dynamics of a transitional coastal archipelago in south-western Finland, in the Baltic Sea. While the area has long been known to have a highly variable underwater light field, quantified knowledge on the phenomenon has been scarce, patchy, or non-existent. This thesis focuses on the variability in the underwater light field through euphotic depths (1% irradiance remaining), which were derived from in situ measurements of vertical profiles of photosynthetically active radiation (PAR). Spot samples were conducted in the archipelago of south-western Finland, mainly during the ice-free growing seasons of 2010 and 2011. In addition to quantifying both the seasonal and geographical patterns of euphotic depth development, the need and usability of underwater light information are also discussed. Light availability was found to fluctuate in multiple dimensions and scales. The euphotic depth was shown to have combined spatio-temporal dynamics rather than separate changes in spatial and temporal dimensions. Such complexity in the underwater light field creates challenges in data collection, as well as in its utilisation. Although local information is needed, in highly variable conditions spot sampled information may only poorly represent its surroundings. Moreover, either temporally or spatially limited sampling may cause biases in understanding underwater light dynamics. Consequently, the application of light availability data, for example in ecological modelling, should be made with great caution.