949 resultados para inverse problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.

Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.

Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.

Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.

Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.

Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fast electron propagation in an inverse cone target is investigated computationally and experimentally. Two-dimensional particle-in-cell simulation shows that fast electrons with substantial numbers are generated at the outer tip of an inverse cone target irradiated by a short intense laser pulse. These electrons are guided and confined to propagate along the inverse cone wall, forming a large surface current. The propagation induces strong transient electric and magnetic fields which guide and confine the surface electron current. The experiment qualitatively verifies the guiding and confinement of the strong electron current in the wall surface. The large surface current and induced strong fields are of importance for fast ignition related researches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of a "projection function" in a finite-dimensional real or complex normed linear space H (the function PM which carries every element into the closest element of a given subspace M) is set forth and examined.

If dim M = dim H - 1, then PM is linear. If PN is linear for all k-dimensional subspaces N, where 1 ≤ k < dim M, then PM is linear.

The projective bound Q, defined to be the supremum of the operator norm of PM for all subspaces, is in the range 1 ≤ Q < 2, and these limits are the best possible. For norms with Q = 1, PM is always linear, and a characterization of those norms is given.

If H also has an inner product (defined independently of the norm), so that a dual norm can be defined, then when PM is linear its adjoint PMH is the projection on (kernel PM) by the dual norm. The projective bounds of a norm and its dual are equal.

The notion of a pseudo-inverse F+ of a linear transformation F is extended to non-Euclidean norms. The distance from F to the set of linear transformations G of lower rank (in the sense of the operator norm ∥F - G∥) is c/∥F+∥, where c = 1 if the range of F fills its space, and 1 ≤ c < Q otherwise. The norms on both domain and range spaces have Q = 1 if and only if (F+)+ = F for every F. This condition is also sufficient to prove that we have (F+)H = (FH)+, where the latter pseudo-inverse is taken using dual norms.

In all results, the real and complex cases are handled in a completely parallel fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]Este proyecto investigador tiene como objetivo el ayudar con la calibración del mecanismo de cinco pares de rotación montado en el taller de Ingeniería Mecánica de la ETSI de Bilbao. En primer lugar se estudiarán los algoritmos de optimización prestando especial atención a la comparativa entre Levenberg-Marquart y Gauss-Newton. Se realizarán estudios en Matlab para concluir cuál de los dos es más eficaz tanto en rapidez como en precisión. El que sea más adecuado se implementará en un programa para la calibración del mecanismo 5R. En segundo lugar se estudiarán los índices de observabilidad. Los estudios que se han realizado sobre ellos hasta ahora son poco concluyentes asique se intentará aclarar su utilidad y determinar cuál es el que conviene utilizar en este caso. Para ello se deberá programar la resolución del problema cinemático inverso. Por último se presentarán los resultados y las conclusiones correspondientes. Se propondrá también un plan de desarrollo de una línea de investigación futura que partirá con este trabajo como base.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how transcriptional regulatory sequence maps to regulatory function remains a difficult problem in regulatory biology. Given a particular DNA sequence for a bacterial promoter region, we would like to be able to say which transcription factors bind there, how strongly they bind, and whether they interact with each other and/or RNA polymerase, with the ultimate objective of integrating knowledge of these parameters into a prediction of gene expression levels. The theoretical framework of statistical thermodynamics provides a useful framework for doing so, enabling us to predict how gene expression levels depend on transcription factor binding energies and concentrations. We used thermodynamic models, coupled with models of the sequence-dependent binding energies of transcription factors and RNAP, to construct a genotype to phenotype map for the level of repression exhibited by the lac promoter, and tested it experimentally using a set of promoter variants from E. coli strains isolated from different natural environments. For this work, we sought to ``reverse engineer'' naturally occurring promoter sequences to understand how variations in promoter sequence affects gene expression. The natural inverse of this approach is to ``forward engineer'' promoter sequences to obtain targeted levels of gene expression. We used a high precision model of RNAP-DNA sequence dependent binding energy, coupled with a thermodynamic model relating binding energy to gene expression, to predictively design and verify a suite of synthetic E. coli promoters whose expression varied over nearly three orders of magnitude.

However, although thermodynamic models enable predictions of mean levels of gene expression, it has become evident that cell-to-cell variability or ``noise'' in gene expression can also play a biologically important role. In order to address this aspect of gene regulation, we developed models based on the chemical master equation framework and used them to explore the noise properties of a number of common E. coli regulatory motifs; these properties included the dependence of the noise on parameters such as transcription factor binding strength and copy number. We then performed experiments in which these parameters were systematically varied and measured the level of variability using mRNA FISH. The results showed a clear dependence of the noise on these parameters, in accord with model predictions.

Finally, one shortcoming of the preceding modeling frameworks is that their applicability is largely limited to systems that are already well-characterized, such as the lac promoter. Motivated by this fact, we used a high throughput promoter mutagenesis assay called Sort-Seq to explore the completely uncharacterized transcriptional regulatory DNA of the E. coli mechanosensitive channel of large conductance (MscL). We identified several candidate transcription factor binding sites, and work is continuing to identify the associated proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incidence of blue-green algal blooms and surface scum-formation are certainly not new phenomena. Many British and European authors have been faithfully describing the unmistakable symptoms of blue-green algal scums for over 800 years. There is no disputing that blue-green algal toxins are extremely harmful. Three quite separate categories of compound have been separated: neurotoxins; hepatotoxins and lipopolysaccharides. There is a popular association between blue-green algae and eutrophication. Certainly the main nuisance species - of Microcystis, Anabaena and Aphanizomenon are rare in oligotrophic lakes and reservoirs. Several approaches have been proposed for the control of blue-green algae. Distinction is made between methods for discharging algae already present (eg algicides; straw bales; viruses; parasitic fungi and herbivorous ciliates), and methods for averting an anticipated abundance in the future (phosphorous control, artificial circulation etc).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.

In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:

  • For a given number of measurements, can we reliably estimate the true signal?
  • If so, how good is the reconstruction as a function of the model parameters?

More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a logarithmic potential theory on Riemann surfaces which generalizes logarithmic potential theory on the complex plane. We show the existence of an equilibrium measure and examine its structure. This leads to a formula for the structure of the equilibrium measure which is new even in the plane. We then use our results to study quadrature domains, Laplacian growth, and Coulomb gas ensembles on Riemann surfaces. We prove that the complement of the support of the equilibrium measure satisfies a quadrature identity. Furthermore, our setup allows us to naturally realize weak solutions of Laplacian growth (for a general time-dependent source) as an evolution of the support of equilibrium measures. When applied to the Riemann sphere this approach unifies the known methods for generating interior and exterior Laplacian growth. We later narrow our focus to a special class of quadrature domains which we call Algebraic Quadrature Domains. We show that many of the properties of quadrature domains generalize to this setting. In particular, the boundary of an Algebraic Quadrature Domain is the inverse image of a planar algebraic curve under a meromorphic function. This makes the study of the topology of Algebraic Quadrature Domains an interesting problem. We briefly investigate this problem and then narrow our focus to the study of the topology of classical quadrature domains. We extend the results of Lee and Makarov and prove (for n ≥ 3) c ≤ 5n-5, where c and n denote the connectivity and degree of a (classical) quadrature domain. At the same time we obtain a new upper bound on the number of isolated points of the algebraic curve corresponding to the boundary and thus a new upper bound on the number of special points. In the final chapter we study Coulomb gas ensembles on Riemann surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of individual weight, duration of development and production of different stages of Tropodiaptomus incognitus are presented. The study is based on data gathered from Lake Chad in 1968.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In freshwater environments of modest size and without notable ecological structure, there is usually present only one diaptomid species. When two or more diaptomid species are present in the same habitat, generally their body dimensions are distinctly different. There are only four examples of co-existence of Arctodiaptomus bacillifer (Koelb.) and Acanthodiaptomus denticornis (Wierz.) situated at higher altitudes alpine lakes. The article discusses the results of sampling in the summer of 1953 and the problem of the co-existence of Arctodiaptomus bacillifer, Acanthodiaptomus denticornis and Heterocope saliens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let F(θ) be a separable extension of degree n of a field F. Let Δ and D be integral domains with quotient fields F(θ) and F respectively. Assume that Δ D. A mapping φ of Δ into the n x n D matrices is called a Δ/D rep if (i) it is a ring isomorphism and (ii) it maps d onto dIn whenever d ϵ D. If the matrices are also symmetric, φ is a Δ/D symrep.

Every Δ/D rep can be extended uniquely to an F(θ)/F rep. This extension is completely determined by the image of θ. Two Δ/D reps are called equivalent if the images of θ differ by a D unimodular similarity. There is a one-to-one correspondence between classes of Δ/D reps and classes of Δ ideals having an n element basis over D.

The condition that a given Δ/D rep class contain a Δ/D symrep can be phrased in various ways. Using these formulations it is possible to (i) bound the number of symreps in a given class, (ii) count the number of symreps if F is finite, (iii) establish the existence of an F(θ)/F symrep when n is odd, F is an algebraic number field, and F(θ) is totally real if F is formally real (for n = 3 see Sapiro, “Characteristic polynomials of symmetric matrices” Sibirsk. Mat. Ž. 3 (1962) pp. 280-291), and (iv) study the case D = Z, the integers (see Taussky, “On matrix classes corresponding to an ideal and its inverse” Illinois J. Math. 1 (1957) pp. 108-113 and Faddeev, “On the characteristic equations of rational symmetric matrices” Dokl. Akad. Nauk SSSR 58 (1947) pp. 753-754).

The case D = Z and n = 2 is studied in detail. Let Δ’ be an integral domain also having quotient field F(θ) and such that Δ’ Δ. Let φ be a Δ/Z symrep. A method is given for finding a Δ’/Z symrep ʘ such that the Δ’ ideal class corresponding to the class of ʘ is an extension to Δ’ of the Δ ideal class corresponding to the class of φ. The problem of finding all Δ/Z symreps equivalent to a given one is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]En el siguiente Trabajo Fin de Grado se va a exponer el análisis cinemático y desarrollo de un modelo virtual para la implementación de las ecuaciones cinemáticas del robot IRB120 de ABB llevados a cabo durante el curso 2013/2014. Comenzando por un estudio del Estado del Arte de la robótica industrial, se plantean seguidamente las ecuaciones de localización del robot en función de las variables de entrada mediante el método matricial. Estas ecuaciones son implementadas en un modelo de MatLab para usarlas en la resolución del problema de posición directo e inverso, y son también usadas en herramientas de creación de trayectorias. Además, sus derivadas se utilizan en el cálculo de velocidades del elemento terminal. Por último, se muestra la creación del prototipo 3D del robot, así como un interfaz gráfico de control del robot para el usuario, y los trabajos de validación llevados a cabo de los mencionados modelos virtuales sobre el robot real.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No abstract.