913 resultados para inter-rater reliability
Resumo:
info:eu-repo/semantics/published
Resumo:
© 2015 Published by Elsevier B.V.Tree growth resources and the efficiency of resource-use for biomass production determine the productivity of forest ecosystems. In nutrient-limited forests, nitrogen (N)-fertilization increases foliage [N], which may increase photosynthetic rates, leaf area index (L), and thus light interception (I
Resumo:
We examined the coherence of trauma memories in a trauma-exposed community sample of 30 adults with and 30 without posttraumatic stress disorder. The groups had similar categories of traumas and were matched on multiple factors that could affect the coherence of memories. We compared the transcribed oral trauma memories of participants with their most important and most positive memories. A comprehensive set of 28 measures of coherence including 3 ratings by the participants, 7 ratings by outside raters, and 18 computer-scored measures, provided a variety of approaches to defining and measuring coherence. A multivariate analysis of variance indicated differences in coherence among the trauma, important, and positive memories, but not between the diagnostic groups or their interaction with these memory types. Most differences were small in magnitude; in some cases, the trauma memories were more, rather than less, coherent than the control memories. Where differences existed, the results agreed with the existing literature, suggesting that factors other than the incoherence of trauma memories are most likely to be central to the maintenance of posttraumatic stress disorder and thus its treatment.
Resumo:
Abstract: New product design challenges, related to customer needs, product usage and environments, face companies when they expand their product offerings to new markets; Some of the main challenges are: the lack of quantifiable information, product experience and field data. Designing reliable products under such challenges requires flexible reliability assessment processes that can capture the variables and parameters affecting the product overall reliability and allow different design scenarios to be assessed. These challenges also suggest a mechanistic (Physics of Failure-PoF) reliability approach would be a suitable framework to be used for reliability assessment. Mechanistic Reliability recognizes the primary factors affecting design reliability. This research views the designed entity as a “system of components required to deliver specific operations”; it addresses the above mentioned challenges by; Firstly: developing a design synthesis that allows a descriptive operations/ system components relationships to be realized; Secondly: developing component’s mathematical damage models that evaluate components Time to Failure (TTF) distributions given: 1) the descriptive design model, 2) customer usage knowledge and 3) design material properties; Lastly: developing a procedure that integrates components’ damage models to assess the mechanical system’s reliability over time. Analytical and numerical simulation models were developed to capture the relationships between operations and components, the mathematical damage models and the assessment of system’s reliability. The process was able to affect the design form during the conceptual design phase by providing stress goals to meet component’s reliability target. The process was able to numerically assess the reliability of a system based on component’s mechanistic TTF distributions, besides affecting the design of the component during the design embodiment phase. The process was used to assess the reliability of an internal combustion engine manifold during design phase; results were compared to reliability field data and found to produce conservative reliability results. The research focused on mechanical systems, affected by independent mechanical failure mechanisms that are influenced by the design process. Assembly and manufacturing stresses and defects’ influences are not a focus of this research.
Resumo:
A flip chip component is a silicon chip mounted to a substrate with the active area facing the substrate. This paper presents the results of an investigation into the relationship between a number of important material properties and geometric parameters on the thermal-mechanical fatigue reliability of a standard flip chip design and a flip chip design with the use of microvias. Computer modeling has been used to analyze the mechanical conditions of flip chips under cyclic thermal loading where the Coffin-Manson empirical relationship has been used to predict the life time of the solder interconnects. The material properties and geometry parameters that have been investigated are the Young's modulus, the coefficient of thermal expansion (CTE) of the underfill, the out-of-plane CTE (CTEz) of the substrate, the thickness of the substrate, and the standoff height. When these parameters vary, the predicted life-times are calculated and some of the features of the results are explained. By comparing the predicted lifetimes of the two designs and the strain conditions under thermal loading, the local CTE mismatch has been found to be one of most important factors in defining the reliability of flip chips with microvias.
Resumo:
The work presented in this paper focuses on the effect of reflow process on the contact resistance and reliability of anisotropic conductive film (ACF) interconnection. The contact resistance of ACF interconnection increases after reflow process due to the decrease in contact area of the conducting particles between the mating I/O pads. However, the relationship between the contact resistance and bonding parameters of the ACF interconnection with reflow treatment follows the similar trend to that of the as-bonded (i.e. without reflow) ACF interconnection. The contact resistance increases as the peak temperature of reflow profile increases. Nearly 40% of the joints were found to be open after reflow with 260 °C peak temperature. During the reflow process, the entrapped (between the chip and substrate) adhesive matrix tries to expand much more than the tiny conductive particles because of the higher coefficient of thermal expansion, the induced thermal stress will try to lift the bump from the pad and decrease the contact area of the conductive path and eventually, leading to a complete loss of electrical contact. In addition, the environmental effect on contact resistance such as high temperature/humidity aging test was also investigated. Compared with the ACF interconnections with Ni/Au bump, higher thermal stress in the Z-direction is accumulated in the ACF interconnections with Au bump during the reflow process owing to the higher bump height, thus greater loss of contact area between the particles and I/O pads leads to an increase of contact resistance and poorer reliability after reflow.
Resumo:
Products manufactured by the electronics sector are having a major impact in telecommunications, transportation space applications, biomedical applications, consumer products, intelligent hand held devices, and of course,the computer. Demands from end-users in terms of greater product functionality, adoption of environmentally friendly materials, and further miniaturization continually pose several challenges to electronics companies. In the context of electronic product design and manufacture, virtual prototying software tools are allowing companies to dramatically reduce the number of phsysical prototypes and design iterations required in product development and hence reduce costs and time to market. This paper details of the trends in these technolgies and provides an example of their use for flip-chip assembly technology.
Resumo:
Experiments as well as computer modeling methods have been used to investigate the effect of the solder reflow process on the electrical characteristics and reliability of anisotropic conductive film (ACF) interconnections. In the experiments, the contact resistance of the ACF interconnections was found to increase after a subsequent reflow and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. In fact, nearly 40 percent of the joints were opened (i.e. lifted away from the pad) after the reflow with a peak temperature of 260 OC while no openings was observed when the peak temperature was 210 "C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a 3-D model of an ACF joint structure was built and Finite Element Analysis was used to predict the stress distrihution in the conductive particles, adhesive matrix and metal pads during the reflow process. The effects of the peak temperature, the CTE of the adhesive matrix and the bump height on the reliability of the ACF interconnections were discussed.
Resumo:
Reliability of electronic parts is a major concern for many manufacturers, since early failures in the field can cost an enormous amount to repair - in many cases far more than the original cost of the product. A great deal of effort is expended by manufacturers to determine the failure rates for a process or the fraction of parts that will fail in a period of time. It is widely recognized that the traditional approach to reliability predictions for electronic systems are not suitable for today's products. This approach, based on statistical methods only, does not address the physics governing the failure mechanisms in electronic systems. This paper discusses virtual prototyping technologies which can predict the physics taking place and relate this to appropriate failure mechanisms. Simulation results illustrate the effect of temperature on the assembly process of an electronic package and the lifetime of a flip-chip package.
Computational modeling techniques for reliability of electronic components on printed circuit boards
Resumo:
This paper describes modeling technology and its use in providing data governing the assembly and subsequent reliability of electronic chip components on printed circuit boards (PCBs). Products, such as mobile phones, camcorders, intelligent displays, etc., are changing at a tremendous rate where newer technologies are being applied to satisfy the demands for smaller products with increased functionality. At ever decreasing dimensions, and increasing number of input/output connections, the design of these components, in terms of dimensions and materials used, is playing a key role in determining the reliability of the final assembly. Multiphysics modeling techniques are being adopted to predict a range of interacting physics-based phenomena associated with the manufacturing process. For example, heat transfer, solidification, marangoni fluid flow, void movement, and thermal-stress. The modeling techniques used are based on finite volume methods that are conservative and take advantage of being able to represent the physical domain using an unstructured mesh. These techniques are also used to provide data on thermal induced fatigue which is then mapped into product lifetime predictions.
Resumo:
Flip-chip assembly, developed in the early 1960s, is now being positioned as a key joining technology to achieve high-density mounting of electronic components on to printed circuit boards for high-volume, low-cost products. Computer models are now being used early within the product design stage to ensure that optimal process conditions are used. These models capture the governing physics taking place during the assembly process and they can also predict relevant defects that may occur. Describes the application of computational modelling techniques that have the ability to predict a range of interacting physical phenomena associated with the manufacturing process. For example, in the flip-chip assembly process we have solder paste deposition, solder joint shape formation, heat transfer, solidification and thermal stress. Illustrates the application of modelling technology being used as part of a larger UK study aiming to establish a process route for high-volume, low-cost, sub-100-micron pitch flip-chip assembly.
Resumo:
This paper details and demonstrates integrated optimisation-reliability modelling for predicting the performance of solder joints in electronic packaging. This integrated modelling approach is used to identify efficiently and quickly the most suitable design parameters for solder joint performance during thermal cycling and is demonstrated on flip-chip components using “no-flow” underfills. To implement “optimisation in reliability” approach, the finite element simulation tool – PHYSICA, is coupled with optimisation and statistical tools. This resulting framework is capable of performing design optimisation procedures in an entirely automated and systematic manner.
Resumo:
Predicting the reliability of newly designed products, before manufacture, is obviously highly desirable for many organisations. Understanding the impact of various design variables on reliability allows companies to optimise expenditure and release a package in minimum time. Reliability predictions originated in the early years of the electronics industry. These predictions were based on historical field data which has evolved into industrial databases and specifications such as the famous MIL-HDBK-217 standard, plus numerous others. Unfortunately the accuracy of such techniques is highly questionable especially for newly designed packages. This paper discusses the use of modelling to predict the reliability of high density flip-chip and BGA components. A number of design parameters are investigated at the assembly stage, during testing, and in-service.
Resumo:
In this paper, the effects of the solder reflow process on the reliability of anisotropic conductive film (ACF) interconnections for flip chip on flex (FCOF) applications are investigated. Experiments as well as computer modeling methods have been used. In the experiments, it was found that the contact resistance of ACF joints increased after the subsequent reflow process, and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. Nearly 40% of the joints were opened (i.e. lifted away from the pad) after the reflow process with 260 °C peak temperature while no opening was observed when the peak temperature was 210 °C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. It was also found that the ACF joints after the reflow process with 210 °C peak temperature showed a high ability to resist water absorption under steady state 85 °C/85%RH conditions, probably because the curing degree of the ACF was improved during the reflow process. To give a good understanding, a 3D model of an ACF joint structure was built and finite element analysis was used to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process.
Resumo:
Recently, research has been carried out to test a novel bumping method which omits the under bump metallurgy forming process by bonding copper columns directly onto the Al pads of the silicon dies. This bumping method could be adopted to simplify the flip chip manufacturing process, increase the productivity and achieve a higher I/O count. This paper describes an investigation of the solder joint reliability of flip-chips based on this new bumping process. Computer modelling methods are used to predict the shape of solder joints and response of flip chips to thermal cyclic loading. The accumulated plastic strain energy at the comer solder joints is used as the damage indicator. Models with a range of design parameters have been compared for their reliability. The parameters that have been investigated are the copper column height, radius and solder volume. The ranking of the relative importance of these parameters is given. For most of the results presented in the paper, the solder material has been assumed to be the lead-free 96.5Sn3.5Ag alloy but some results for 60Sn40Pb solder joints have also been presented.