952 resultados para insulin-like growth factor 1 (IGF 1),
Resumo:
Recently, we demonstrated that circulating levels of vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) are increased in sepsis (Yano, K., P.C. Liaw, J.M. Mullington, S.C. Shih, H. Okada, N. Bodyak, P.M. Kang, L. Toltl, B. Belikoff, J. Buras, et al. 2006. J. Exp. Med. 203:1447-1458). Moreover, enhanced VEGF/Flk-1 signaling was shown to contribute to sepsis morbidity and mortality. We tested the hypothesis that PlGF also contributes to sepsis outcome. In mouse models of endotoxemia and cecal ligation puncture, the genetic absence of PlGF or the systemic administration of neutralizing anti-PlGF antibodies resulted in higher mortality compared with wild-type or immunoglobulin G-injected controls, respectively. The increased mortality associated with genetic deficiency of PlGF was reversed by adenovirus (Ad)-mediated overexpression of PlGF. In the endotoxemia model, PlGF deficiency was associated with elevated circulating levels of VEGF, induction of VEGF expression in the liver, impaired cardiac function, and organ-specific accentuation of barrier dysfunction and inflammation. Mortality of endotoxemic PlGF-deficient mice was increased by Ad-mediated overexpression of VEGF and was blocked by expression of soluble Flt-1. Collectively, these data suggest that up-regulation of PlGF in sepsis is an adaptive host response that exerts its benefit, at least in part, by attenuating VEGF signaling.
Resumo:
BACKGROUND: Gene therapy has been recently introduced as a novel approach to treat ischemic tissues by using the angiogenic potential of certain growth factors. We investigated the effect of adenovirus-mediated gene therapy with transforming growth factor-beta (TGF-beta) delivered into the subdermal space to treat ischemically challenged epigastric skin flaps in a rat model. MATERIAL AND METHODS: A pilot study was conducted in a group of 5 animals pretreated with Ad-GFP and expression of green fluorescent protein in the skin flap sections was demonstrated under fluorescence microscopy at 2, 4, and 7 days after the treatment, indicating a successful transfection of the skin flaps following subdermal gene therapy. Next, 30 male Sprague Dawley rats were divided into 3 groups of 10 rats each. An epigastric skin flap model, based solely on the right inferior epigastric vessels, was used as the model in this study. Rats received subdermal injections of adenovirus encoding TGF-beta (Ad-TGF-beta) or green fluorescent protein (Ad-GFP) as treatment control. The third group (n = 10) received saline and served as a control group. A flap measuring 8 x 8 cm was outlined on the abdominal skin extending from the xiphoid process proximally and the pubic region distally, to the anterior axillary lines bilaterally. Just prior to flap elevation, the injections were given subdermally in the left upper corner of the flap. The flap was then sutured back to its bed. Flap viability was evaluated seven days after the initial operation. Digital images of the epigastric flaps were taken and areas of necrotic zones relative to total flap surface area were measured and expressed as percentages by using a software program. RESULTS: There was a significant increase in mean percent surviving area between the Ad-TGF-beta group and the two other control groups (P < 0.05). (Ad-TGF-beta: 90.3 +/- 4.0% versus Ad-GFP: 82.2 +/- 8.7% and saline group: 82.6 +/- 4.3%.) CONCLUSIONS: In this study, the authors were able to demonstrate that adenovirus-mediated gene therapy using TGF-beta ameliorated ischemic necrosis in an epigastric skin flap model, as confirmed by significant reduction in the necrotic zones of the flap. The results of this study raise the possibility of using adenovirus-mediated TGF-beta gene therapy to promote perfusion in random portion of skin flaps, especially in high-risk patients.
Resumo:
INTRODUCTION: Liver cirrhosis develops only in a minority of heavy drinkers. Genetic factors may account for some variation in the progression of fibrosis in alcoholic liver disease (ALD). Transforming growth factor beta 1 (TGFbeta1) is a key profibrogenic cytokine in fibrosis and its gene contains several polymorphic sites. A single nucleotide polymorphism at codon 25 has been suggested to affect fibrosis progression in patients with chronic hepatitis C virus infection, fatty liver disease, and hereditary hemochromatosis. Its contribution to the progression of ALD has not been investigated sufficiently so far. PATIENTS AND METHODS: One-hundred-and-fifty-one heavy drinkers without apparent ALD, 149 individuals with alcoholic cirrhosis, and 220 alcoholic cirrhotics who underwent liver transplantation (LTX) were genotyped for TGFbeta1 codon 25 variants. RESULTS: Univariate analysis suggested that genotypes Arg/Pro or Pro/Pro are associated with decompensated liver cirrhosis requiring LTX. However, after adjusting for patients' age these genotypes did not confer a significant risk for cirrhosis requiring LTX. CONCLUSION: TGFbeta1 codon 25 genotypes Arg/Pro or Pro/Pro are not associated with alcoholic liver cirrhosis. Our study emphasizes the need for adequate statistical methods and accurate study design when evaluating the contribution of genetic variants to the course of chronic liver diseases.
Resumo:
It is unknown whether transforming growth factor beta1 (TGF-beta1) signaling uniformly participates in fibrogenic chronic liver diseases, irrespective of the underlying origin, or if other cytokines such as interleukin (IL)-13 share in fibrogenesis (e.g., due to regulatory effects on type I pro-collagen expression). TGF-beta1 signaling events were scored in 396 liver tissue samples from patients with diverse chronic liver diseases, including hepatitis B virus (HBV), hepatitis C virus (HCV), Schistosoma japonicum infection, and steatosis/steatohepatitis. Phospho-Smad2 staining correlated significantly with fibrotic stage in patients with HBV infection (n = 112, P < 0.001) and steatosis/steatohepatitis (n = 120, P < 0.01), but not in patients with HCV infection (n = 77, P > 0.05). In tissue with HBx protein expression, phospho-Smad2 was detectable, suggesting a functional link between viral protein expression and TGF-beta1 signaling. For IL-13, immunostaining correlated with fibrotic stage in patients with HCV infection and steatosis/steatohepatitis. IL-13 protein was more abundant in liver tissue lysates from three HCV patients compared with controls, as were IL-13 serum levels in 68 patients with chronic HCV infection compared with 20 healthy volunteers (72.87 +/- 26.38 versus 45.41 +/- 3.73, P < 0.001). Immunohistochemistry results suggest that IL-13-mediated liver fibrogenesis may take place in the absence of phospho-signal transducer and activator of transcription protein 6 signaling. In a subgroup of patients with advanced liver fibrosis (stage > or =3), neither TGF-beta nor IL-13 signaling was detectable. Conclusion: Depending on the cause of liver damage, a predominance of TGF-beta or IL-13 signaling is found. TGF-beta1 predominance is detected in HBV-related liver fibrogenesis and IL-13 predominance in chronic HCV infection. In some instances, the underlying fibrogenic mediator remains enigmatic.
Resumo:
Expression of connective tissue growth factor (CTGF), a member of the CCN gene family, is known to be significantly induced by mechanical stress. We have therefore investigated whether other members of the CCN gene family, including Cyr61 and Nov, might reveal a similar stress-dependent regulation. Fibroblasts growing under stressed conditions within a three-dimensional collagen gel showed at least a 15 times higher level of Cyr61 mRNA than cells growing under relaxed conditions. Upon relaxation, the decline of the Cyr61 mRNA to a lower level occurred within 2 h, and was thus quicker than the response of CTGF. The regulation was fully reversible when stress was reapplied. Thus, Cyr61 represents another typical example of a stress-responsive gene. The level of the Nov mRNA was low in the stressed state, but increased in the relaxed state. This CCN gene therefore shows an inverted regulation relative to that of Cyr61 and CTGF. Inhibition of protein kinases by means of staurosporine suppressed the stress-induced expression of Cyr61 and CTGF. Elevated levels of cAMP induced by forskolin mimicked the effects of relaxation on the regulation of Cyr61, CTGF and Nov. Thus, adenylate cyclase as well as one or several protein kinases might be involved in the mechanoregulation of these CCN genes.
Resumo:
BACKGROUND: Marfan syndrome (MFS) is caused by mutations in the fibrillin-1 gene and dysregulation of transforming growth factor-beta (TGF-beta). Recent evidence suggests that losartan, an angiotensin II type 1 blocker that blunts TGF-beta activation, may be an effective treatment for MFS. We hypothesized that dysregulation of TGF-beta might be mirrored in circulating TGF-beta concentrations. METHODS AND RESULTS: Serum obtained from MFS mutant mice (Fbn1(C1039G/+)) treated with losartan was analyzed for circulating TGF-beta1 concentrations and compared with those from placebo-treated and wild-type mice. Aortic root size was measured by echocardiography. Data were validated in patients with MFS and healthy individuals. In mice, circulating total TGF-beta1 concentrations increased with age and were elevated in older untreated Fbn1(C1039G/+) mice compared with wild-type mice (P=0.01; n=16; mean+/-SEM, 115+/-8 ng/mL versus n=17; mean+/-SEM, 92+/-4 ng/mL). Losartan-treated Fbn1(C1039G/+) mice had lower total TGF-beta1 concentrations compared with age-matched Fbn1(C1039G/+) mice treated with placebo (P=0.01; n=18; 90+/-5 ng/mL), and circulating total TGF-beta1 levels were indistinguishable from those of age-matched wild-type mice (P=0.8). Correlation was observed between circulating TGF-beta1 levels and aortic root diameters in Fbn1(C1039G/+) and wild-type mice (P=0.002). In humans, circulating total TGF-beta1 concentrations were elevated in patients with MFS compared with control individuals (P<0.0001; n=53; 15+/-1.7 ng/mL versus n=74; 2.5+/-0.4 ng/mL). MFS patients treated with losartan (n=55) or beta-blocker (n=80) showed significantly lower total TGF-beta1 concentrations compared with untreated MFS patients (P< or =0.05). CONCLUSIONS: Circulating TGF-beta1 concentrations are elevated in MFS and decrease after administration of losartan, beta-blocker therapy, or both and therefore might serve as a prognostic and therapeutic marker in MFS.
Resumo:
With the rapid increase in approaches to pro- or anti-angiogenic therapy, new and effective methodologies for administration of cell-bound growth factors will be required. We sought to develop the natural hydrogel matrix fibrin as platform for extensive interactions and continuous signaling by the vascular morphogen ephrin-B2 that normally resides in the plasma membrane and requires multivalent presentation for ligation and activation of Eph receptors on apposing endothelial cell surfaces. Using fibrin and protein engineering technology to induce multivalent ligand presentation, a recombinant mutant ephrin-B2 receptor binding domain was covalently coupled to fibrin networks at variably high densities. The ability of fibrin-bound ephrin-B2 to act as ligand for endothelial cells was preserved, as demonstrated by a concomitant, dose-dependent increase of endothelial cell binding to engineered ephrin-B2-fibrin substrates in vitro. The therapeutic relevance of ephrin-B2-fibrin implant matrices was demonstrated by a local angiogenic response in the chick embryo chorioallontoic membrane evoked by the local and prolonged presentation of matrix-bound ephrin-B2 to tissue adjacing the implant. This new knowledge on biomimetic fibrin vehicles for precise local delivery of membrane-bound growth factor signals may help to elucidate specific biological growth factor function, and serve as starting point for development of new treatment strategies.
Resumo:
NV1FGF is an expression plasmid encoding sp.FGF-1(21-154) currently under investigation for therapeutic angiogenesis in clinical trials. NV1FGF plasmid distribution and transgene expression following intramuscular (IM) injection in patients is unknown. The study involved six patients with chronic critical limb ischemia (CLI) planned to undergo amputation. A total dose of 0.5, 2, or 4 mg NV1FGF was administered as eight IM injections (0.006, 0.25, or 0.5 mg per injection) 3-5 days before amputation. Injected sites (30 cm(3)) were divided into equally sized smaller pieces to assess spatial distribution of NV1FGF sequences (PCR), NV1FGF mRNA (reverse transcriptase-PCR), and fibroblast growth factor-1 (FGF-1)-expressing cells (immunohistochemistry). Data indicated gene expression at all doses. The distribution area was within 5-12 cm for NV1FGF sequences containing the expression cassette, up to 5 cm for NV1FGF mRNA, and up to 3 cm for FGF-1-expressing myofibers. All FGF receptors were detected indicating robust potential for bioactivity after NV1FGF gene transfer. Circulating levels of NV1FGF sequences were shown to decrease within days after injection. Data support demonstration of plasmid-mediated gene transfer and expression in muscles from patients with CLI. FGF-1 expression was shown to be limited to injection sites, which supports the concept of multiple-site injection for therapeutic use.
Resumo:
In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients.
Resumo:
OBJECTIVE Catecholamines released from β-adrenergic neurons upon stress can interfere with periodontal regeneration. The cellular mechanisms, however, are unclear. Here, we assessed the effect of catecholamines on proliferation of periodontal fibroblasts. METHODS Fibroblasts from the gingiva and the periodontal ligament were exposed to agonists of the β-adrenergic receptors; isoproterenol (ISO, non-selective β-adrenergic agonist), salbutamol (SAL, selective β2-adrenergic receptor agonist) and BRL 37344 (BRL selective β3-receptor agonist). Proliferation was stimulated with platelet-derived growth factor-BB (PDGF-BB). Pharmacological inhibitors and gene expression analysis further revealed β-adrenergic signalling. RESULTS Gingiva and periodontal ligament fibroblast express the β2-adrenergic receptor. ISO and SAL but not BRL decreased proliferation of fibroblasts in the presence of PDGF-BB. The inhibitory effect of β-adrenergic signalling on proliferation but not protein synthesis in response to PDGF-BB was reduced by propranolol, a non-selective β-adrenergic antagonist. CONCLUSIONS These results suggest that β2-receptor agonists can reduce the mitogenic response of periodontal fibroblasts. These data add to the compelling concept that blocking of β2-receptor signalling can support tissue maintenance and regeneration.
Resumo:
BACKGROUND CONTEXT The fate of human mesenchymal stem cells (hMSCs) supplied to the degenerating intervertebral disc (IVD) is still not fully understood and can be negatively affected by low oxygen, pH, and glucose concentration of the IVD environment. The hMSC survival and yield upon injection of compromised IVD could be improved by the use of an appropriate carrier and/or by predifferentiation of hMSCs before injection. PURPOSE To optimize hMSC culture conditions in thermoreversible hyaluronan-based hydrogel, hyaluronan-poly(N-isopropylacrylamide) (HA-pNIPAM), to achieve differentiation toward the disc phenotype in vitro, and evaluate whether preconditioning contributes to a better hMSC response ex vivo. STUDY DESIGN In vitro and ex vivo whole-organ culture of hMSCs. METHODS In vitro cultures of hMSCs were conducted in HA-pNIPAM and alginate for 1 week under hypoxia in chondropermissive medium alone and with the supplementation of transforming growth factor β1 or growth and differentiation factor 5 (GDF-5). Ex vivo, hMSCs were either suspended in HA-pNIPAM and directly supplied to the IVDs or predifferentiated with GDF-5 for 1 week in HA-pNIPAM and then supplied to the IVDs. Cell viability was evaluated by Live-Dead assay, and DNA, glycosaminoglycan (GAG), and gene expression profiles were used to assess hMSC differentiation toward the disc phenotype. RESULTS The HA-pNIPAM induced hMSC differentiation toward the disc phenotype more effectively than alginate: in vitro, higher GAG/DNA ratio and higher collagen type II, SOX9, cytokeratin-19, cluster of differentiation 24, and forkhead box protein F1 expressions were found for hMSCs cultured in HA-pNIPAM compared with those cultured in alginate, regardless of the addition of growth factors. Ex vivo, direct combination of HA-pNIPAM with the disc environment induced a stronger disc-like differentiation of hMSCs than predifferentiation of hMSCs followed by their delivery to the discs. CONCLUSIONS Hyaluronan-based thermoreversible hydrogel supports hMSC differentiation toward the disc phenotype without the need for growth factor supplementation in vitro and ex vivo. Further in vivo studies are required to confirm the suitability of this hydrogel as an effective stem cell carrier for the treatment of IVD degeneration.