922 resultados para indoor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel approach to network security against passive eavesdroppers by employing a configurable beam-forming technique to create tightly defined regions of coverage for targeted users. In contrast to conventional encryption methods, our security scheme is developed at the physical layer by configuring antenna array beam patterns to transmit the data to specific regions. It is shown that this technique can effectively reduce vulnerability of the physical regions to eavesdropping by adapting the antenna configuration according to the intended user's channel state information. In this paper we present the application of our concept to 802.11n networks where an antenna array is employed at the access point, and consider the issue of minimizing the coverage area of the region surrounding the targeted user. A metric termed the exposure region is formally defined and used to evaluate the level of security offered by this technique. A range of antenna array configurations are examined through analysis and simulation, and these are subsequently used to obtain the optimum array configuration for a user traversing a coverage area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconfigurable bi-state interwoven spiral FSSs are explored in this work. Their switching capability is realized by pin diodes that enable the change of the electromagnetic response between transparent and reflecting modes at the specified frequencies in both singly and dual polarised unit cell configurations. The proposed topologies are single layer FSS with their elements acting also as dc current carrying conductors supplying the bias signal for switching pin diodes between the on and off states, thus avoiding the need of external bias lines that can cause parasitic resonances and affect the response at oblique incidence. The presented simulation results show that such active FSSs have potentially good isolation between the transmission and reflection states, while retaining the substantially subwavelength response of the unit cell with large fractional bandwidths (FBWs) inherent to the original passive FSSs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural ventilation is a sustainable solution to maintaining healthy and comfortable environmental conditions in buildings. However, the effective design, construction and operation of naturally ventilated buildings require a good understanding of complex airflow patterns caused by the buoyancy and wind effects.The work presented in this article employed a 3D computational fluid dynamics (CFD) analysis in order to investigate environmental conditions and thermal comfort of the occupants of a highly-glazed naturally ventilated meeting room. This analysis was facilitated by the real-time field measurements performed in an operating building, and previously developed formal calibration methodology for reliable CFD models of indoor environments. Since, creating an accurate CFD model of an occupied space in a real-life scenario requires a high level of CFD expertise, trusted experimental data and an ability to interpret model input parameters; the calibration methodology guided towards a robust and reliable CFD model of the indoor environment. This calibrated CFD model was then used to investigate indoor environmental conditions and to evaluate thermal comfort indices for the occupants of the room. Thermal comfort expresses occupants' satisfaction with thermal environment in buildings by defining the range of indoor thermal environmental conditions acceptable to a majority of occupants. In this study, the thermal comfort analysis, supported by both field measurements and CFD simulation results, confirmed a satisfactory and optimal room operation in terms of thermal environment for the investigated real-life scenario. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The notion of privacy represents a central criterion for both indoor and outdoor social spaces in most traditional Arab settlements. This paper investigates privacy and everyday life as determinants of the physical properties of the built and urban fabric and will study their impact on traditional settlements and architecture of the home in the contemporary Iraqi city. It illustrates the relationship between socio-cultural aspects of public/private realms using the notion of the social sphere as an investigative tool of the concept of social space in Iraqi houses and local communities (Mahalla). This paper reports that in spite of the impact of other factors in articulating built forms, privacy embodies the primary role under the effects of Islamic rules, principles and culture. The crucial problem is the underestimation of traditional inherited values through opening social spaces to the outside that giving unlimited accesses to the indoor social environment creating many problems with regard to privacy and communal social integration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The papers in this special issue focus on the topic of location awareness for radio and networks. Localization-awareness using radio signals stands to revolutionize the fields of navigation and communication engineering. It can be utilized to great effect in the next generation of cellular networks, mining applications, health-care monitoring, transportation and intelligent highways, multi-robot applications, first responders operations, military applications, factory automation, building and environmental controls, cognitive wireless networks, commercial and social network applications, and smart spaces. A multitude of technologies can be used in location-aware radios and networks, including GNSS, RFID, cellular, UWB, WLAN, Bluetooth, cooperative localization, indoor GPS, device-free localization, IR, Radar, and UHF. The performances of these technologies are measured by their accuracy, precision, complexity, robustness, scalability, and cost. Given the many application scenarios across different disciplines, there is a clear need for a broad, up-to-date and cogent treatment of radio-based location awareness. This special issue aims to provide a comprehensive overview of the state-of-the-art in technology, regulation, and theory. It also presents a holistic view of research challenges and opportunities in the emerging areas of localization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indoor personnel localization research has generated a range of potential techniques and algorithms. However, these typically do not account for the influence of the user's body upon the radio channel. In this paper an active RFID based patient tracking system is demonstrated and three localization algorithms are used to estimate the location of a user within a modern office building. It is shown that disregarding body effects reduces the accuracy of the algorithms' location estimates and that body shadowing effects create a systematic position error that estimates the user's location as closer to the RFID reader that the active tag has line of sight to.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multicarrier Index Keying (MCIK) is a recently developed technique that modulates subcarriers but also indices of the subcarriers. In this paper a novel low-complexity detection scheme of subcarrier indices is proposed for an MCIK system and addresses a substantial reduction in complexity over the optimalmaximum likelihood (ML) detection. For the performance evaluation, a closed-form expression for the pairwise error probability (PEP) of an active subcarrier index, and a tight approximation of the average PEP of multiple subcarrier indices are derived in closed-form. The theoretical outcomes are validated usingsimulations, at a difference of less than 0.1dB. Compared to the optimal ML, the proposed detection achieves a substantial reduction in complexity with small loss in error performance (<= 0.6dB).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemp-lime concrete is a sustainable alternative to standard building wall materials, with low associated embodied energy. It exhibits good hygric, acoustic and thermal properties, making it an exciting, sustainable building envelope material. When cast in temporary shuttering around a timber frame, it exhibits lower thermal conductivity than concrete, and consequently achieves low U-values in a primarily mono-material wall construction. Although cast relatively thick hemp-lime walls do not generally achieve the low U-values stipulated in building regulations. However assessment of its thermal performance through evaluation of its resistance to thermal transfer alone, underestimates its true thermal quality. The thermal inertia, or reluctance of the wall to change its temperature when exposed to changing environmental temperatures, also has a significant impact on the thermal quality of the wall, the thermal comfort of the interior space and energy consumption due to space heating. With a focus on energy reduction in buildings, regulations emphasise thermal resistance to heat transfer with only less focus on thermal inertia or storage benefits due to thermal mass. This paper investigates dynamic thermal responsiveness in hemp-lime concrete walls. It reports the influence of thermal conductivity, density and specific heat through analysis of steady state and transient heat transfer, in the walls. A novel hot-box design which isolates the conductive heat flow is used, and compared with tests in standard hot-boxes. Thermal diffusivity and effusivity are evaluated, using experimentally measured conductivity, based on analytical relationships. Experimental results evident that hemp-lime exhibits high thermal inertia. They show the thermal inertia characteristics compensate for any limitations in the thermal resistance of the construction material. When viewed together the thermal resistance and mass characteristics of hemp-lime are appropriate to maintain comfortable thermal indoor conditions and low energy operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Channel randomness can be exploited to generate secret keys. However, to ensure secrecy, it is necessary that the channel response of any eavesdropping party remain sufficiently de-correlated with that of the legitimate users'. In this paper, we investigate whether such de-correlation occurs for a body area network (BAN) operating in an indoor environment at 2.45 GHz. The hypothetical BAN configuration consisted of two legitimate transceivers, one situated on the user's left wrist and the other on the user's waist. The eavesdroppers were positioned in either a co-located or distributed manner in the area surrounding the BAN user. Using the simultaneous channel response measured at the legitimate BAN nodes and the eavesdropper positions for stationary and mobile scenarios, we analyze the localized correlation coefficient. This allows us to determine if it is possible to generate secret keys in the presence of multiple eavesdroppers in an indoor environment. Our experimental results show that although channel reciprocity was observed for both the stationary and the mobile scenarios, a higher de-correlation between the legitimate users' channels was observed for the stationary case. This indicates that mobile scenarios are better suited for secret key generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical distributions have been extensively used in modeling fading effects in conventional and modern wireless communications. In the present work, we propose a novel κ − µ composite shadowed fading model, which is based on the valid assumption that the mean signal power follows the inverse gamma distribution instead of the lognormal or commonly used gamma distributions. This distribution has a simple relationship with the gamma distribution, but most importantly, its semi heavy-tailed characteristics constitute it suitable for applications relating to modeling of shadowed fading. Furthermore, the derived probability density function of the κ − µ / inverse gamma composite distribution admits a rather simple algebraic representation that renders it convenient to handle both analytically and numerically. The validity and utility of this fading model are demonstrated by means of modeling the fading effects encountered in body centric communications channels, which have been known to be susceptible to the shadowing effect. To this end, extensive comparisons are provided between theoretical and respective real-time measurement results. It is shown that these comparisons exhibit accurate fitting of the new model for various measurement set ups that correspond to realistic communication scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a new composite fadingmodel which assumes that the mean signal power of an η−µ signalenvelope follows an inverse gamma distribution. The inversegamma distribution has a simple relationship with the gammadistribution and can be used to model shadowed fading due to itssemi heavy-tailed characteristics. To demonstrate the utility of thenew η−µ / inverse gamma composite fading model, we investigatethe characteristics of the shadowed fading behavior observed inbody centric communications channels which are known to besusceptible to shadowing effects, particularly generated by thehuman body. It is shown that the η−µ / inverse gamma compositefading model provided an excellent fit to the measurement data.Moreover, using Kullback-Leibler divergence, the η −µ / inversegamma composite fading model was found to provide a better fitto the measured data than the κ − µ / inverse gamma compositefading model, for the communication scenarios considered here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose
– Concern of the deterioration of indoor environmental quality as a result of energy efficient building design strategies is growing. Apprehensions of the effect of airtight, super insulated envelopes, the reduction of infiltration, and the reliance on mechanical systems to provide adequate ventilation (air supply) is promoting emerging new research in this field. The purpose of this paper is to present the results of an indoor air quality (IAQ) and thermal comfort investigation in UK energy efficient homes, through a case study investigation.

Design/methodology/approach
– The case study dwellings consisted of a row of six new-build homes which utilize mechanical ventilation with heat recovery (MVHR) systems, are built to an average airtightness of 2m3/m2/hr at 50 Pascal’s, and constructed without a central heating system. Physical IAQ measurements and occupant interviews were conducted during the summer and winter months over a 24-hour period, to gain information on occupant activities, perception of the interior environment, building-related health and building use.

Findings
– The results suggest inadequate IAQ and perceived thermal comfort, insufficient use of purge ventilation, presence of fungal growth, significant variances in heating patterns, occurrence of sick building syndrome symptoms and issues with the MVHR system.

Practical implications
– The findings will provide relevant data on the applicability of airtight, mechanically ventilated homes in a UK climate, with particular reference to IAQ.

Originality/value
– IAQ data of this nature is essentially lacking, particularly in the UK context. The findings will aid the development of effective sustainable design strategies that are appropriate to localized climatic conditions and sensitive to the health of building occupants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-carrier index keying (MCIK) is a recently developed transmission technique that exploits the sub-carrier indices as an additional degree of freedom for data transmission. This paper investigates the performance of a low complexity detection scheme with diversity reception for MCIK with orthogonal frequency division multiplexing (OFDM). For the performance evaluation, an exact and an approximate closed form expression for the pairwise error probability (PEP) of a greedy detector (GD) with maximal ratio combining (MRC) is derived. The presented results show that the performance of the GD is significantly improved when MRC diversity is employed. The proposed hybrid scheme is found to outperform maximum likelihood (ML) detection with a substantial reduction on the associated computational complexity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dynamic spectrum access networks, cognitive radio terminals monitor their spectral environment in order to detect and opportunistically access unoccupied frequency channels. The overall performance of such networks depends on the spectrum occupancy or availability patterns. Accurate knowledge on the channel availability enables optimum performance of such networks in terms of spectrum and energy efficiency. This work proposes a novel probabilistic channel availability model that can describe the channel availability in different polarizations for mobile cognitive radio terminals that are likely to change their orientation during their operation. A Gaussian approximation is used to model the empirical occupancy data that was obtained through a measurement campaign in the cellular frequency bands within a realistic operational scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectrum sensing is the cornerstone of cognitive radio technology and refers to the process of obtaining awareness of the radio spectrum usage in order to detect the presence of other users. Spectrum sensing algorithms consume considerable energy and time. Prediction methods for inferring the channel occupancy of future time instants have been proposed as a means of improving performance in terms of energy and time consumption. This paper studies the performance of a hidden Markov model (HMM) spectrum occupancy predictor as well as the improvement in sensing energy and time consumption based on real occupancy data obtained in the 2.4GHz ISM band. Experimental results show that the HMM-based occupancy predictor outperforms a kth order Markov and a 1-nearest neighbour (1NN) predictor. Our study also suggests that by employing such a predictive scheme in spectrum sensing, an improvement of up to 66% can be achieved in the required sensing energy and time.