960 resultados para incentive compatibility
Resumo:
This research aims at the CEO's (chief executive officer) incentive-reward system and investigates 456 companies that have come into the market. The structure and level of agent reward are analyzed. And the problem in the incentive-reward mechanism is brought forward. The agent's payments are poor comparing to their contributions. And stock is not a primary incentive. Bonus compensation is still the dominant incentive means. By questionnaire and interview, it was fond that matriel need was rank first among these CEOs'needs. These foundinds indicate that the agents' payment is too poor to work as an effective incentive. The corporation's agent incentive is not enough in fact. The two reasons about this problem lie in our institutions and traditional opinions about commerce. To solve this matter, we must establish a scientific and reasonable evaluation system and incentive-reward system. At the same time, the market system and corporation management mechanism are absolutely need.
Resumo:
La0.8Sr0.2Mn1.1O3 (LSM1.1)-10 mol% Sc2O3-Stabilized ZrO2 co-doped with CeO2 (ScSZ) composite cathodes were investigated for anode-supported solid oxide fuel cells (SOFCs) with thin 8 mol% Y2O3-stabilized ZrO2 (YSZ) electrolyte. X-ray diffraction (XRD) results indicated that the ScSZ electrolytes displayed good chemical compatibility with the nonstoichiometric LSM1.1 against co-firing at 1300 degrees C. Increasing the CeO2 content in the ScSZ electrolytes dramatically suppressed the electrode polarization resistance, which may be related to the improved surface oxygen exchange or the enlarged active area of cathode. The 5Ce10ScZr was the best electrolyte for the composite cathodes, which caused a small ohmic resistance decrease and the reduced polarization resistance and brought about the highest cell performance. The cell performances at lower temperatures seemed to rely on the electrode polarization resistance more seriously, than the ohmic resistance. Compared with the cell impedance at higher temperatures, the higher the 5Ce10ScZr proportion in the composite cathodes, the smaller the increment of the charge transfer resistance at lower temperatures. The anode-supported SOFC with the LSM1.1-5Ce10ScZr (60:40) composite cathode achieved the maximum power densities of 0.82 W/cm(2) at 650 degrees C and 2.24 W/cm(2) at 800 degrees C, respectively. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Yang, Ying, Yang, Biao, and Wijngaard, Jacob, ' Impact of postponement on transportation: An environmental perspective', International Journal of Logistics Management (2005) 16(2) pp.192-204 RAE2008
Resumo:
Langstaff, David; Chase, T., (2007) 'A multichannel detector array with 768 pixels developed for electron spectroscopy', Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 573(1-2) pp.169-171 RAE2008
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
The increasing diversity of Internet application requirements has spurred recent interest in transport protocols with flexible transmission controls. In window-based congestion control schemes, increase rules determine how to probe available bandwidth, whereas decrease rules determine how to back off when losses due to congestion are detected. The control rules are parameterized so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and loss rate. This paper presents a comprehensive study of a new spectrum of window-based congestion controls, which are TCP-friendly as well as TCP-compatible under RED. Our controls utilize history information in their control rules. By doing so, they improve the transient behavior, compared to recently proposed slowly-responsive congestion controls such as general AIMD and binomial controls. Our controls can achieve better tradeoffs among smoothness, aggressiveness, and responsiveness, and they can achieve faster convergence. We demonstrate analytically and through extensive ns simulations the steady-state and transient behavior of several instances of this new spectrum.
Resumo:
Routing protocols for ad-hoc networks assume that the nodes forming the network are either under a single authority, or else that they would be altruistically forwarding data for other nodes with no expectation of a return. These assumptions are unrealistic since in ad-hoc networks, nodes are likely to be autonomous and rational (selfish), and thus unwilling to help unless they have an incentive to do so. Providing such incentives is an important aspect that should be considered when designing ad-hoc routing protocols. In this paper, we propose a dynamic, decentralized routing protocol for ad-hoc networks that provides incentives in the form of payments to intermediate nodes used to forward data for others. In our Constrained Selfish Routing (CSR) protocol, game-theoretic approaches are used to calculate payments (incentives) that ensure both the truthfulness of participating nodes and the fairness of the CSR protocol. We show through simulations that CSR is an energy efficient protocol and that it provides lower communication overhead in the best and average cases compared to existing approaches.
Resumo:
We present a neural network that adapts and integrates several preexisting or new modules to categorize events in short term memory (STM), encode temporal order in working memory, evaluate timing and probability context in medium and long term memory. The model shows how processed contextual information modulates event recognition and categorization, focal attention and incentive motivation. The model is based on a compendium of Event Related Potentials (ERPs) and behavioral results either collected by the authors or compiled from the classical ERP literature. Its hallmark is, at the functional level, the interplay of memory registers endowed with widely different dynamical ranges, and at the structural level, the attempt to relate the different modules to known anatomical structures.
Resumo:
This paper reports on the design and the manufacturing of an integrated DCDC converter, which respects the specificity of sensor node network: compactness, high efficiency in acquisition and transmission modes, and compatibility with miniature Lithium batteries. A novel integrated circuit (ASIC) has been designed and manufactured to provide regulated Voltage to the sensor node from miniaturized, thin film Lithium batteries. Then, a 3D integration technique has been used to integrate this ASIC in a 3 layers stack with high efficiency passives components, mixing the wafer level technologies from two different research institutions. Electrical results have demonstrated the feasibility of this integrated system and experiments have shown significant improvements in the case of oscillations in regulated voltage. However, stability of this output voltage toward the input voltage has still to be improved.
Resumo:
The power consumption of wireless sensor networks (WSN) module is an important practical concern in building energy management (BEM) system deployments. A set of metrics are created to assess the power profiles of WSN in real world condition. The aim of this work is to understand and eventually eliminate the uncertainties in WSN power consumption during long term deployments and the compatibility with existing and emerging energy harvesting technologies. This paper investigates the key metrics in data processing, wireless data transmission, data sensing and duty cycle parameter to understand the system power profile from a practical deployment prospective. Based on the proposed analysis, the impacts of individual metric on power consumption in a typical BEM application are presented and the subsequent low power solutions are investigated.
Resumo:
In this thesis a novel transmission format, named Coherent Wavelength Division Multiplexing (CoWDM) for use in high information spectral density optical communication networks is proposed and studied. In chapter I a historical view of fibre optic communication systems as well as an overview of state of the art technology is presented to provide an introduction to the subject area. We see that, in general the aim of modern optical communication system designers is to provide high bandwidth services while reducing the overall cost per transmitted bit of information. In the remainder of the thesis a range of investigations, both of a theoretical and experimental nature are carried out using the CoWDM transmission format. These investigations are designed to consider features of CoWDM such as its dispersion tolerance, compatibility with forward error correction and suitability for use in currently installed long haul networks amongst others. A high bit rate optical test bed constructed at the Tyndall National Institute facilitated most of the experimental work outlined in this thesis and a collaboration with France Telecom enabled long haul transmission experiments using the CoWDM format to be carried out. An amount of research was also carried out on ancillary topics such as optical comb generation, forward error correction and phase stabilisation techniques. The aim of these investigations is to verify the suitability of CoWDM as a cost effective solution for use in both current and future high bit rate optical communication networks
Resumo:
Silicon (Si) is the base material for electronic technologies and is emerging as a very attractive platform for photonic integrated circuits (PICs). PICs allow optical systems to be made more compact with higher performance than discrete optical components. Applications for PICs are in the area of fibre-optic communication, biomedical devices, photovoltaics and imaging. Germanium (Ge), due to its suitable bandgap for telecommunications and its compatibility with Si technology is preferred over III-V compounds as an integrated on-chip detector at near infrared wavelengths. There are two main approaches for Ge/Si integration: through epitaxial growth and through direct wafer bonding. The lattice mismatch of ~4.2% between Ge and Si is the main problem of the former technique which leads to a high density of dislocations while the bond strength and conductivity of the interface are the main challenges of the latter. Both result in trap states which are expected to play a critical role. Understanding the physics of the interface is a key contribution of this thesis. This thesis investigates Ge/Si diodes using these two methods. The effects of interface traps on the static and dynamic performance of Ge/Si avalanche photodetectors have been modelled for the first time. The thesis outlines the original process development and characterization of mesa diodes which were fabricated by transferring a ~700 nm thick layer of p-type Ge onto n-type Si using direct wafer bonding and layer exfoliation. The effects of low temperature annealing on the device performance and on the conductivity of the interface have been investigated. It is shown that the diode ideality factor and the series resistance of the device are reduced after annealing. The carrier transport mechanism is shown to be dominated by generation–recombination before annealing and by direct tunnelling in forward bias and band-to-band tunnelling in reverse bias after annealing. The thesis presents a novel technique to realise photodetectors where one of the substrates is thinned by chemical mechanical polishing (CMP) after bonding the Si-Ge wafers. Based on this technique, Ge/Si detectors with remarkably high responsivities, in excess of 3.5 A/W at 1.55 μm at −2 V, under surface normal illumination have been measured. By performing electrical and optical measurements at various temperatures, the carrier transport through the hetero-interface is analysed by monitoring the Ge band bending from which a detailed band structure of the Ge/Si interface is proposed for the first time. The above unity responsivity of the detectors was explained by light induced potential barrier lowering at the interface. To our knowledge this is the first report of light-gated responsivity for vertically illuminated Ge/Si photodiodes. The wafer bonding approach followed by layer exfoliation or by CMP is a low temperature wafer scale process. In principle, the technique could be extended to other materials such as Ge on GaAs, or Ge on SOI. The unique results reported here are compatible with surface normal illumination and are capable of being integrated with CMOS electronics and readout units in the form of 2D arrays of detectors. One potential future application is a low-cost Si process-compatible near infrared camera.
Resumo:
Drug delivery systems influence the various processes of release, absorption, distribution and elimination of drug. Conventional delivery methods administer drug through the mouth, the skin, transmucosal areas, inhalation or injection. However, one of the current challenges is the lack of effective and targeted oral drug administration. Development of sophisticated strategies, such as micro- and nanotechnology that can integrate the design and synthesis of drug delivery systems in a one-step, scalable process is fundamental in advancing the limitations of conventional processing techniques. Thus, the objective of this thesis is to evaluate novel microencapsulation technologies in the production of size-specific and target-specific drug-loaded particles. The first part of this thesis describes the utility of PDMS and silicon microfluidic flow focusing devices (MFFDs) to produce PLGA-based microparticles. The formation of uniform droplets was dependent on the surface of PDMS remaining hydrophilic. However, the durability of PDMS was limited to no more than 1 hour before wetting of the microchannel walls with dichloromethane and subsequent swelling occurred. Critically, silicon MFFDs revealed very good solvent compatibility and was sufficiently robust to withstand elevated fluid flow rates. Silicon MFFDs facilitated experiments to run over days with continuous use and re-use of the device with a narrower microparticle size distribution, relative to conventional production techniques. The second part of this thesis demonstrates an alternative microencapsulation technology, SmPill® minispheres, to target CsA delivery to the colon. Characterisation of CsA release in vitro and in vivo was performed. By modulating the ethylcellulose:pectin coating thickness, release of CsA in-vivo was more effectively controlled compared to current commercial CsA formulations and demonstrated a linear in-vitro in-vivo relationship. Coated minispheres were shown to limit CsA release in the upper small intestine and enhance localised CsA delivery to the colon.
Resumo:
The primary aim of this thesis is to analyse legal and governance issues in the use of Environmental NPR-PPMs, particularly those aiming to promote sustainable practices or to protect natural resources. NPR-PPMs have traditionally been thought of as being incompatible with the rules of the World Trade Organization (WTO). However, the issue remains untouched by WTO adjudicatory bodies. One can suggest that WTO adjudicatory bodies may want to leave this issue to the Members, but the analysis of the case law also seems to indicate that the question of legality of NPR-PPMs has not been brought ‘as such’ in dispute settlement. This thesis advances the argument that despite the fact that the legal status of NPR-PPMs remains unsettled, during the last decades adjudicatory bodies have been scrutinising environmental measures based on NPR-PPMs just as another expression of the regulatory autonomy of the Members. Though NPR-PPMs are regulatory choices associated with a wide range of environmental concerns, trade disputes giving rise to questions related to the legality of process-based measures have been mainly associated with the protection of marine wildlife (i.e., fishing techniques threatening or affecting animal species). This thesis argues that environmental objectives articulated as NPR-PPMs can indeed qualify as legitimate objectives both under the GATT and the TBT Agreement. However, an important challenge for the their compatibility with WTO law relate to aspects associated with arbitrary or unjustifiable discrimination. In the assessment of discrimination procedural issues play an important role. This thesis also elucidates other important dimensions to the issue from the perspective of global governance. One of the arguments advanced in this thesis is that a comprehensive analysis of environmental NPR-PPMs should consider not only their role in what is regarded as trade barriers (governmental and market-driven), but also their significance in global objectives such as the transition towards a green economy and sustainable patterns of consumption and production.
Resumo:
Agency problems within the firm are a significant hindrance to efficiency. We propose trust between coworkers as a superior alternative to the standard tools used to mitigate agency problems: increased monitoring and incentive-based pay. We model trust as mutual, reciprocal altruism between pairs of coworkers and show how it induces employees to work harder, relative to those at firms that use the standard tools. In addition, we show that employees at trusting firms have higher job satisfaction, and that these firms enjoy lower labor cost and higher profits. We conclude by discussing how trust may also be easier to use within the firm than the standard agency-mitigation tools. © 2002 Elsevier Science B.V. All rights reserved.