878 resultados para implicit relations of spatial neighborhood
Resumo:
Simple reaction times (RTs) to auditory-somatosensory (AS) multisensory stimuli are facilitated over their unisensory counterparts both when stimuli are delivered to the same location and when separated. In two experiments we addressed the possibility that top-down and/or task-related influences can dynamically impact the spatial representations mediating these effects and the extent to which multisensory facilitation will be observed. Participants performed a simple detection task in response to auditory, somatosensory, or simultaneous AS stimuli that in turn were either spatially aligned or misaligned by lateralizing the stimuli. Additionally, we also informed the participants that they would be retrogradely queried (one-third of trials) regarding the side where a given stimulus in a given sensory modality was presented. In this way, we sought to have participants attending to all possible spatial locations and sensory modalities, while nonetheless having them perform a simple detection task. Experiment 1 provided no cues prior to stimulus delivery. Experiment 2 included spatially uninformative cues (50% of trials). In both experiments, multisensory conditions significantly facilitated detection RTs with no evidence for differences according to spatial alignment (though general benefits of cuing were observed in Experiment 2). Facilitated detection occurs even when attending to spatial information. Performance with probes, quantified using sensitivity (d'), was impaired following multisensory trials in general and significantly more so following misaligned multisensory trials. This indicates that spatial information is not available, despite being task-relevant. The collective results support a model wherein early AS interactions may result in a loss of spatial acuity for unisensory information.
Resumo:
[Narrative and the Diagrammatic. Preliminary Thoughts and Seven Theses.] This article proposes a view of narrative that does not depend on the traditional perspective of temporal sequence but emphasizes the spatial structure of literary narrative. Contrary to the prevalent treatment of space in narrative theory, the notion of spatiality in this context refers not to the space that is represented by the narrative (e.g. the setting and other spatial elements of the fictional world) but to the space that represents it: first, the graphic surface of the text; second, the (quasi-)spatial mental representation of its content that is produced in the process of reception. It is argued that these conditions form the primary ontological mode of narrative, whereas the temporal development of a story is an aesthetic illusion that has been specifically stimulated by the narrative conventions of approximately the past three centuries and must thus be considered a secondary effect. The diagrammatic, as a way of both depicting data and perceiving relations through spatial representation, thus forms a more adequate methodological approach to understanding narrative structure than approaches that are implicitly derived from the 'grammar' of narrative in the structuralist sense and its sequential logic.
Resumo:
We present a new global method for the identification of hotspots in conservation and ecology. The method is based on the identification of spatial structure properties through cumulative relative frequency distributions curves, and is tested with two case studies, the identification of fish density hotspots and terrestrial vertebrate species diversity hotspots. Results from the frequency distribution method are compared with those from standard techniques among local, partially local and global methods. Our approach offers the main advantage to be independent from the selection of any threshold, neighborhood, or other parameter that affect most of the currently available methods for hotspot analysis. The two case studies show how such elements of arbitrariness of the traditional methods influence both size and location of the identified hotspots, and how this new global method can be used for a more objective selection of hotspots.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
Zonal management in vineyards requires the prior delineation of stable yield zones within the parcel. Among the different methodologies used for zone delineation, cluster analysis of yield data from several years is one of the possibilities cited in scientific literature. However, there exist reasonable doubts concerning the cluster algorithm to be used and the number of zones that have to be delineated within a field. In this paper two different cluster algorithms have been compared (k-means and fuzzy c-means) using the grape yield data corresponding to three successive years (2002, 2003 and 2004), for a ‘Pinot Noir’ vineyard parcel. Final choice of the most recommendable algorithm has been linked to obtaining a stable pattern of spatial yield distribution and to allowing for the delineation of compact and average sized areas. The general recommendation is to use reclassified maps of two clusters or yield classes (low yield zone and high yield zone) and, consequently, the site-specific vineyard management should be based on the prior delineation of just two different zones or sub-parcels. The two tested algorithms are good options for this purpose. However, the fuzzy c-means algorithm allows for a better zoning of the parcel, forming more compact areas and with more equilibrated zonal differences over time.
Resumo:
Spatio-temporal variability in settlement and recruitment, high mortality during the first life-history stages, and selection may determine the genetic structure of cohorts of long-lived marine invertebrates at small scales. We conducted a spatial and temporal analysis of the common Mediterranean Sea urchin Paracentrotus lividus to determine the genetic structure of cohorts at different scales. In Tossa de Mar (NW Mediterranean), recruitment was followed over 5 consecutive springs (2006-2010). In spring 2008, recruits and two-year-old individuals were collected at 6 locations along East and South Iberian coasts separated from 200 to over 1,100 km. All cohorts presented a high genetic diversity based on a fragment of mtCOI. Our results showed a marked genetic homogeneity in the temporal monitoring and a low degree of spatial structure in 2006. In 2008, coupled with an abnormality in the usual circulation patterns in the area, the genetic structure of the southern populations studied changed markedly, with arrival of many private haplotypes. This fact highlights the importance of point events in renewing the genetic makeup of populations, which can only be detected through analysis of the cohort structure coupling temporal and spatial perspectives.
Resumo:
Psychophysical studies suggest that humans preferentially use a narrow band of low spatial frequencies for face recognition. Here we asked whether artificial face recognition systems have an improved recognition performance at the same spatial frequencies as humans. To this end, we estimated recognition performance over a large database of face images by computing three discriminability measures: Fisher Linear Discriminant Analysis, Non-Parametric Discriminant Analysis, and Mutual Information. In order to address frequency dependence, discriminabilities were measured as a function of (filtered) image size. All three measures revealed a maximum at the same image sizes, where the spatial frequency content corresponds to the psychophysical found frequencies. Our results therefore support the notion that the critical band of spatial frequencies for face recognition in humans and machines follows from inherent properties of face images, and that the use of these frequencies is associated with optimal face recognition performance.
Resumo:
Many models proposed to study the evolution of collective action rely on a formalism that represents social interactions as n-player games between individuals adopting discrete actions such as cooperate and defect. Despite the importance of spatial structure in biological collective action, the analysis of n-player games games in spatially structured populations has so far proved elusive. We address this problem by considering mixed strategies and by integrating discrete-action n-player games into the direct fitness approach of social evolution theory. This allows to conveniently identify convergence stable strategies and to capture the effect of population structure by a single structure coefficient, namely, the pairwise (scaled) relatedness among interacting individuals. As an application, we use our mathematical framework to investigate collective action problems associated with the provision of three different kinds of collective goods, paradigmatic of a vast array of helping traits in nature: "public goods" (both providers and shirkers can use the good, e.g., alarm calls), "club goods" (only providers can use the good, e.g., participation in collective hunting), and "charity goods" (only shirkers can use the good, e.g., altruistic sacrifice). We show that relatedness promotes the evolution of collective action in different ways depending on the kind of collective good and its economies of scale. Our findings highlight the importance of explicitly accounting for relatedness, the kind of collective good, and the economies of scale in theoretical and empirical studies of the evolution of collective action.
Resumo:
We develop a method for generating focused vector beams with circular polarization at any transverse plane. Based on the Richards-Wolf vector model, we derive analytical expressions to describe the propagation of these set of beams near the focal area. Since the polarization and the amplitude of the input beam are not uniform, an interferometric system capable of generating spatially-variant polarized beams has to be used. In particular, this wavefront is manipulated by means of spatial light modulators displaying computer generated holograms and subsequently focused using a high numerical aperture objective lens. Experimental results using a NA=0.85 system are provided: irradiance and Stokes images of the focused field at different planes near the focal plane are presented and compared with those obtained by numerical simulation.
Resumo:
This study aims at understanding the evolutionary processes at work in specialized species interactions. Prom the macroevolutionary perspective, coevolution among specialized taxa was proposed to be one of the major processes generating biodiversity. We challenge this idea from the theoretical and practical perspective and through a literature review and show that the major hypotheses linking coevolutionary process with macroevolutionary patterns do not necessarily predict lineage co diversification and parallel speciation, limit¬ing the utility of the comparative phylogenenetic approach for investigating coevolution¬ary processes. We also point to the rarity of observed long-term coevolutionary dynamics among lineages and propose that coevolution rather occurs in shorter timescales, followed by ecological fitting. Prom the empirical point, we focus on the nursery pollination interaction between the European globeflower Trollius europaeus (Ranunculaceae) and its associated Chiastocheta flies (Anthomyiidae; Diptera) as a model system of evolution and maintenance of special¬ized interactions. The flies are obligate parasites of the seeds, but also pollinate the plant - it was thus proposed that both species are mutually dependent. Contrasting with the paradigm used for two decades of research on this system, we show that the female fitness component of the plant is similar in the populations with and without Chiastocheta. The plant is thus not exclusively dependent on the flies for reproduction. We discuss this result in the context of the factors responsible for the evolution of mutualistic systems. Understanding the evolution of a biological system requires understanding of its phylo- genetic context. Previous studies showed large mismatch between mtDNA phylogeny and morphological taxonomy in Chiastocheta. By using a large set of RAD-sequencing loci, we delineate the species limits that are congruent with morphology, and show that the discordance is best explained by the scenario of mitochondrial capture among fly species. Finally, we examine this system from a phylogeographic perspective, and identify the lack of congruence in spatial genetic structures of the plant and associated insects across their whole geographic range. The flies show lower numbers of spatial genetic groups than the plant, indicating that not all of the plant réfugia were shared by all the fly species or that the migration dynamics homogenized some of the groups. The incongruence in spatial genetic patterns indicates that fly migrations were largely independent from the genetic background of the plant, following rather a scenario of resource tracking, without the signature of coevolutionary process at this scale. Indeed, while the flies require the plant to survive climatic oscillations, the opposite is not true. Eventually, we show that there is no phylogenetic signal of spatial genetic structures, meaning that neither histories nor life- history traits are shared among closely related species and that species are characterized by unique trajectories of their genes. -- Cette étude vise à comprendre les processus évolutifs à l'oeuvre au sein d'interactions en¬tre espèces spécialisées. Du point de vue macroévolutif, la coévolution entre les taxons spécialisée a été considérée comme l'un des principaux processus générateur de biodiversité. Nous contestons cette idée du point de vue théorique et pratique à travers une revue de la littérature. Nous montrons que les hypothèses majeures reliant les processus coévolutifs avec les patterns de diversité au niveau macroévolutif ne prédisent pas nécessairement la co- diversification des lignées et leur spéciation parallèle, ce qui limite l'utilité de l'approche de phylogénie comparative pour étudier les processus coévolutifs . Nous rappelons également le peu d'exemples de dynamique coévolutive à long terme et proposons que la coévolution se produit plutôt dans des intervalles courts, suivis d'ajustements écologiques. Du point empirique, nous nous concentrons sur l'interaction de pollinisation entre le Trolle d'Europe Trollius europaeus (Ranunculaceae) et ses pollinisateurs associés, du genre Chiastocheta (Anthomyiidae; Diptera) en tant que système-modèle pour étudier l'évolution et le maintien des interactions spécialisées. Les mouches sont des parasites obligatoires des semences, mais pollinisent également la plante. Il a donc été proposé que les deux espèces soient mutuellement dépendantes. Contrastant avec le paradigme utilisé pendant deux décennies de recherche sur ce système, nous montrons, que la composante de fitness femelle de la plante est similaire dans les populations avec et sans Chiastocheta. La plante ne dépend donc pas exclusivement de son interaction avec les mouches pour la reproduction. Nous discutons de ce résultat dans le contexte des facteurs responsables de l'évolution des systèmes mutualistes. Comprendre l'évolution d'un système biologique nécessite la compréhension de son con- texte phylogénétique. Des études antérieures ont montré, chez Chiastocheta, de grandes disparités entre les phylogénies obtenues à partir d'ADN mitochondrial et la taxonomie basée sur les critères morphologiques. En utilisant un grand nombre de loci obtenus par RAD-sequencing, nous traçons les limites des espèces, qui concordent avec les car¬actéristiques morphologies, et montrons que la discordance s'explique en fait par un scénario de capture mitochondriale entre espèces de mouches. Enfin, nous examinons le système d'un point de vue phylogéographique, et identi¬fions les incohérences entre structurations génétiques spatiales de la plante et des insectes associés dans toute leur aire de distribution géographique. Les mouches présentent un nombre de groupes génétiques inférieur à la plante, indiquant que tous les refuges de la plante n'étaient pas partagés par toutes les espèces de mouches ou que les dynamiques migratoires ont homogénéisés certains des groupes chez les mouches. Les différences ob¬servées dans les patrons de structuration génétique spatiale indique que les migrations et dispersions des mouches ont été indépendantes du contexte génétique de la plante, et ces dernières ont été uniquement tributaires de la disponibilité des ressources, sans qu'il n'y ait de signature du processus de coévolution à cette échelle. En effet, tandis que les mouches ont besoin de la plante pour survivre aux oscillations climatiques, le contraire n'est pas exact. Finalement, nous montrons qu'il n'y a pas de signal phylogénétique des structurations génétiques spatiales chez les mouches, ce qui signifie que ni l'histoire, ni les traits d'histoire de vie ne sont partagés entre les espèces phylogénétiquement proches et que les espèces sont caractérisées par des trajectoires uniques de leurs gènes.
Resumo:
Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites.
Resumo:
We investigate the importance of the labour mobility of inventors, as well as the scale, extent and density of their collaborative research networks, for regional innovation outcomes. To do so, we apply a knowledge production function framework at the regional level and include inventors’ networks and their labour mobility as regressors. Our empirical approach takes full account of spatial interactions by estimating a spatial lag model together, where necessary, with a spatial error model. In addition, standard errors are calculated using spatial heteroskedasticity and autocorrelation consistent estimators to ensure their robustness in the presence of spatial error autocorrelation and heteroskedasticity of unknown form. Our results point to the existence of a robust positive correlation between intraregional labour mobility and regional innovation, whilst the relationship with networks is less clear. However, networking across regions positively correlates with a region’s innovation intensity.
Resumo:
Of the many dimensions of the problem of violence exercised by men toward women in the context of the relations of partner or ex partner, this article deals with the analysis of the discursive productions of the institutional actors that are part of the judicial process. Our intention is to investigate the relationship between criminal law and gender-based violence starting from the implementation of the Law of Integral Gender-based Violence in Spain (LO. 1 / 2004) from a theoretical perspective which includes contributions from social psychology, and socio-legal feminism. We have approached the legal instrument - the Law of Integral Gender-based Violence - through the discourse of legal officers with a perspective that questions the values, so often proclaimed, of universality, objectivity and neutrality of the law
Resumo:
ABSTRACT When Hume, in the Treatise on Human Nature, began his examination of the relation of cause and effect, in particular, of the idea of necessary connection which is its essential constituent, he identified two preliminary questions that should guide his research: (1) For what reason we pronounce it necessary that every thing whose existence has a beginning should also have a cause and (2) Why we conclude that such particular causes must necessarily have such particular effects? (1.3.2, 14-15) Hume observes that our belief in these principles can result neither from an intuitive grasp of their truth nor from a reasoning that could establish them by demonstrative means. In particular, with respect to the first, Hume examines and rejects some arguments with which Locke, Hobbes and Clarke tried to demonstrate it, and suggests, by exclusion, that the belief that we place on it can only come from experience. Somewhat surprisingly, however, Hume does not proceed to show how that derivation of experience could be made, but proposes instead to move directly to an examination of the second principle, saying that, "perhaps, be found in the end, that the same answer will serve for both questions" (1.3.3, 9). Hume's answer to the second question is well known, but the first question is never answered in the rest of the Treatise, and it is even doubtful that it could be, which would explain why Hume has simply chosen to remove any mention of it when he recompiled his theses on causation in the Enquiry concerning Human Understanding. Given this situation, an interesting question that naturally arises is to investigate the relations of logical or conceptual implication between these two principles. Hume seems to have thought that an answer to (2) would also be sufficient to provide an answer to (1). Henry Allison, in his turn, argued (in Custom and Reason in Hume, p. 94-97) that the two questions are logically independent. My proposal here is to try to show that there is indeed a logical dependency between them, but the implication is, rather, from (1) to (2). If accepted, this result may be particularly interesting for an interpretation of the scope of the so-called "Kant's reply to Hume" in the Second Analogy of Experience, which is structured as a proof of the a priori character of (1), but whose implications for (2) remain controversial.
Resumo:
The loss of large areas of Cerrado (Brazilian savanna) in Brazil can lead to reduced biodiversity and to the extinction of species. Therefore, the present study aimed to investigate the genetic fragility of populations of Copaifera langsdorffii Desf exposed to different anthropic conditions in fragments of Cerrado in the state of São Paulo. The study was carried out in two Experimental Stations operated by the Forest Institute (Assis and Itirapina), in one fully protected conservation unit (Pedregulho) and in one private property (Brotas). Analyses were conducted using leaf samples from 353 adult specimens and eight pairs of microsatellite loci. The number of alleles per locus ranged from 13 to 15 in all populations, but the mean number of effective alleles was approximately half this value (7.2 to 9-1). Observed heterozygosity was significant and lower than the expected in all populations. Consequently, all populations deviated from Hardy-Weinberg expected frequencies. Fixation indexes were significant for all populations, with the Pedregulho population having the lowest value (0.189) and Itirapina having the highest (0.283). The analysis of spatial genetic structure detected family structures at distance classes of 20 to 65 m in the populations studied. No clones were detected in the populations. Estimates of effective population size were low, but the area occupied by each population studied was large enough for conservation, medium and long term. Recent reductions or bottlenecks were detected in all four populations. Mean Gst’ (genetic divergence) indicated that most of the variation was within populations. Cluster structure analysis based on the genotypes detected K= 4 clusters with distinct allele frequencies patterns. The genetic differentiation observed among populations is consistent with the hypothesis of genetic and geographic isolation. Therefore, it is essential to adopt conservation strategies that raise the gene flow between fragments.