780 resultados para implementazione ERP, MRP, Lean Production, BPR, Change Management
Resumo:
Based on a case study of Charazani – Bolivia, this article outlines the understanding of adaptive strategies to cope with climate change and its impact on environmental and socioeconomic conditions that are affecting rural livelihoods. Mainly qualitative methods were used to collect and analyze data following the framework for vulnerability assessments of a socio-ecological system. Climate data reveals an increase of precipitation and temperature during the last decades. Furthermore the occurrence of extreme weather events, particularly drought, frost, hailstorms and consequently landslides and fire are increasing. Local testimonies highlight these events as the principle reasons for agricultural losses. This climatic variability and simultaneous social changes were identified as the drivers of vulnerability. Yet, several adaptive measures were identified at household, community and external levels in order to cope with such vulnerability; e.g. traditional techniques in agriculture and risk management. Gradually, farmers complement these activities with contemporary practices in agriculture, like intensification of land use, diversification of irrigation system and use of artificial fertilizers. As part of a recent trend community members are forced to search for new off-farm alternatives beyond agriculture for subsistence. Despite there is a correspondingly large array of possible adaptation measures that families are implementing, local testimonies point out, that farmers often do not have the capacity and neither the economical resources to mitigate the risk in agricultural production. Although several actions are already considered to promote further adaptive capacity, the current target is to improve existing livelihood strategies by reducing vulnerability to hazards induced by climate change.
Resumo:
The aim of this paper is to emphasize the capacity and resilience of rural communities in regard to sustainable food security by adopting innovative approaches to irrigation. The shift from subsistence to commercial agriculture is promoted as a means to sustainable development. An analysis of the efficacy of irrigation schemes in Zimbabwe suggests that, in terms of providing sustainable agricultural production, they have neither been cost-effective nor have they provided long-term food security to their beneficiaries. This is certainly true of Shashe Scheme and most others in Beitbridge District. The Shashe Irrigation Scheme project represents a bold attempt at developing a fresh approach to the management of communal land irrigation schemes through a Private Public Community Partnership. The model illustrated represents a paradigm shift from subsistence agriculture to a system based on new technologies, market linkages and community ownership that build resilience and lead to sustainable food security and economic prosperity.
Resumo:
A review of the implications of climate change for freshwater resources, based on Chapter 4 of Working Group 2, IPCC.
Resumo:
Crop production is inherently sensitive to variability in climate. Temperature is a major determinant of the rate of plant development and, under climate change, warmer temperatures that shorten development stages of determinate crops will most probably reduce the yield of a given variety. Earlier crop flowering and maturity have been observed and documented in recent decades, and these are often associated with warmer (spring) temperatures. However, farm management practices have also changed and the attribution of observed changes in phenology to climate change per se is difficult. Increases in atmospheric [CO2] often advance the time of flowering by a few days, but measurements in FACE (free air CO2 enrichment) field-based experiments suggest that elevated [CO2] has little or no effect on the rate of development other than small advances in development associated with a warmer canopy temperature. The rate of development (inverse of the duration from sowing to flowering) is largely determined by responses to temperature and photoperiod, and the effects of temperature and of photoperiod at optimum and suboptimum temperatures can be quantified and predicted. However, responses to temperature, and more particularly photoperiod, at supraoptimal temperature are not well understood. Analysis of a comprehensive data set of time to tassel initiation in maize (Zea mays) with a wide range of photoperiods above and below the optimum suggests that photoperiod modulates the negative effects of temperature above the optimum. A simulation analysis of the effects of prescribed increases in temperature (0-6 degrees C in + 1 degrees C steps) and temperature variability (0% and + 50%) on days to tassel initiation showed that tassel initiation occurs later, and variability was increased, as the temperature exceeds the optimum in models both with and without photoperiod sensitivity. However, the inclusion of photoperiod sensitivity above the optimum temperature resulted in a higher apparent optimum temperature and less variability in the time of tassel initiation. Given the importance of changes in plant development for crop yield under climate change, the effects of photoperiod and temperature on development rates above the optimum temperature clearly merit further research, and some of the knowledge gaps are identified herein.
Resumo:
Many ecosystem services are delivered by organisms that depend on habitats that are segregated spatially or temporally from the location where services are provided. Management of mobile organisms contributing to ecosystem services requires consideration not only of the local scale where services are delivered, but also the distribution of resources at the landscape scale, and the foraging ranges and dispersal movements of the mobile agents. We develop a conceptual model for exploring how one such mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES. The model includes interactions and feedbacks among policies affecting land use, market forces and the biology of the organisms involved. Animal-mediated pollination contributes to the production of goods of value to humans such as crops; it also bolsters reproduction of wild plants on which other services or service-providing organisms depend. About one-third of crop production depends on animal pollinators, while 60-90% of plant species require an animal pollinator. The sensitivity of mobile organisms to ecological factors that operate across spatial scales makes the services provided by a given community of mobile agents highly contextual. Services vary, depending on the spatial and temporal distribution of resources surrounding the site, and on biotic interactions occurring locally, such as competition among pollinators for resources, and among plants for pollinators. The value of the resulting goods or services may feed back via market-based forces to influence land-use policies, which in turn influence land management practices that alter local habitat conditions and landscape structure. Developing conceptual models for MABES aids in identifying knowledge gaps, determining research priorities, and targeting interventions that can be applied in an adaptive management context.
Resumo:
The United States and the European Union have set targets for biofuel production to decrease reliance on fossil fuels and to reduce fossil carbon emissions. Attainment of biofuel targets d6pends upon policy and infrastructure development but also on production of suitable raw materials. Production of relevant crops relies on the decisions that farmers make in their economic and political environment. We need to identify any farmer-related barriers to biofuel production and to determine whether novel policy and technology are required to meet targets. These aspects of the emerging biofuel industry are relevant across international barriers and have notyet been addressed quantitatively. We describe a case study from the UK of farmers' intentions toward producing two biofuel crops for which refining capacity either exists or is under construction. Given farmers' intentions, current land use, and conversion efficiency, we estimate potential biofuel production. These estimates indicate that EU targets are not achievable using domestically grown raw materials without policy intervention, use of alternative feedstocks, and either significant improvements in processing efficiency or largescale changes in land use.
Resumo:
When assessing hypotheses, the possibility and consequences of false-positive conclusions should be considered along with the avoidance of false-negative ones. A recent assessment of the system of rice intensification (SRI) by McDonald et al. [McDonald, A.J., Hobbs, P.R., Riha, S.J., 2006. Does the system of rice intensification outperform conventional best management? A synopsis of the empirical record. Field Crops Res. 96, 31-36] provides a good example where this was not done as it was preoccupied with avoiding false-positives only. It concluded, based on a desk study using secondary data assembled selectively from diverse sources and with a 95% level of confidence, that 'best management practices' (BMPs) on average produce 11% higher rice yields than SRI methods, and that, therefore, SRI has little to offer beyond what is already known by scientists.
Resumo:
The existing literature on lean construction is overwhelmingly prescriptive with little recognition of the social and politicised nature of the diffusion process. The prevailing production-engineering perspective too often assumes that organizations are unitary entities where all parties strive for the common goal of 'improved performance'. An alternative perspective is developed that considers the diffusion of lean construction across contested pluralistic arenas. Different actors mobilize different storylines to suit their own localized political agendas. Multiple storylines of lean construction continuously compete for attention with other management fashions. The conceptualization and enactment of lean construction therefore differs across contexts, often taking on different manifestations from those envisaged. However, such localized enactments of lean construction are patterned and conditioned by pre-existing social and economic structures over which individual managers have limited influence. Taking a broader view, 'leanness' can be conceptualized in terms of a quest for structural flexibility involving restructuring, downsizing and outsourcing. From this perspective, the UK construction industry can be seen to have embarked upon leaner ways of working in the mid-1970s, long before the terminology of lean thinking came into vogue. Semi-structured interviews with construction sector policy-makers provide empirical support for the view that lean construction is a multifaceted concept that defies universal definition.
Resumo:
Climate change is expected to produce reductions in water availability in England, potentially necessitating adaptive action by the water industry to maintain supplies. As part of Ofwat's fifth Periodic Review (PR09), water companies recently released their draft Water Resources Management Plans, setting out how each company intends to maintain the balance between the supply and demand for water over the next 25 years, following Environment Agency guidelines. This paper reviews these plans to determine company estimates of the impact of climate change on water supply relative to other resource pressures. The approaches adopted for incorporating the impact in the plans and the proposed management solutions are also identified. Climate change impacts for individual resource zones range from no reductions in deployable output to greater than 50% over the planning period. The estimated national aggregated loss of deployable output under a “core” climate scenario is ~520 Ml/d (3% of deployable output) by 2034/35, the equivalent of the supply of one entire water company (South West Water). Climate change is the largest single driver of change in water supplies over the planning period. Over half of the climate change impact is concentrated in southern England. In extreme cases, climate change uncertainty is of the same magnitude as the change under the core scenario (up to a loss of ~475 Ml/d). 44 of the 68 resource zones with available data are estimated to have a climate change impact. In 35 of these climate change has the greatest impact although in 10 zones sustainability reductions have a greater impact. Of the overall change in downward pressure on the supply-demand balance over the planning period, ~56% is accounted for by increased demand (620 Ml/d) and supply side climate change accounts for ~37% (407 Ml/d). Climate change impacts have a cumulative impact in concert with other changing supply side reducing components increasing the national pressure on the supply-demand balance. Whilst the magnitude of climate change appears to justify its explicit consideration, it is rare that adaptation options are planned solely in response to climate change but as a suite of options to provide a resilient supply to a range of pressures (including significant demand side pressures). Supply-side measures still tend to be considered by water companies to be more reliable than demand-side measures.