1000 resultados para ice cores


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present records of biogenic opal percentage and burial rate in 12 piston cores from the Atlantic and Indian sectors of the Southern Ocean. These records provide a detailed, quantitative description of changing patterns of opal deposition over the last 450 kyr. The striking regional coherence of these records suggests that dissolution in the deep sea and sediment pore waters does not obscure the surface productivity signal, and therefore these opal time series can be used in combination with other surface water tracers to make inferences about the chemistry and circulation of the Southern Ocean under different global climate conditions. Three broad depositional patterns can be distinguished. Northernmost records (39°-42°S latitude) are characterized by enhanced opal burial during glacial periods and strong 41 kyr periodicity. Records from cores just north of the present Antarctic Polar Front (46°-49°S) show even larger increases in opal burial rate during glacial intervals, but have variance concentrated in the 100 and 23 kyr bands. Southernmost records (51°-55°S) are completely out of phase with those to the north, with greatly reduced opal burial rates during glacial periods. Taken as a whole, the opal records show no evidence for the increased total Antarctic productivity predicted by recent geochemical models of atmospheric CO2 variability. The areal expansion of Southern Ocean sea ice over the present zone of high siliceous productivity provides one plausible explanation for the glacial-interglacial opal patterns. The excess silica not taken up in this zone during glacial periods would contribute to greater nutrient availability and thus higher productivity in the subantarctic region. However, local circulation changes may act to modify this basic signal, possibly accounting for the observed differences in the opal variance spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Well-dated benthic foraminifer oxygen isotopic records (d18O) from different water depths and locations within the Atlantic Ocean exhibit distinct patterns and significant differences in timing over the last deglaciation. This has two implications: on the one hand, it confirms that benthic d18O cannot be used as a global correlation tool with millennial-scale precision, but on the other hand, the combination of benthic isotopic records with independent dating provides a wealth of information on past circulation changes. Comparing new South Atlantic benthic isotopic data with published benthic isotopic records, we show that (1) circulation changes first affected benthic d18O in the 1000-2200 m range, with marked decreases in benthic d18O taking place at ~17.5 cal. kyr B.P. (ka) due to the southward propagation of brine waters generated in the Nordic Seas during Heinrich Stadial 1 (HS1) cold period; (2) the arrival of d18O-depleted deglacial meltwater took place later at deeper North Atlantic sites; (3) hydrographic changes recorded in North Atlantic cores below 3000 m during HS1 do not correspond to simple alternations between northern- and southern-sourced water but likely reflect instead the incursion of brine-generated deep water of northern as well as southern origin; and (4) South Atlantic waters at ~44°S and ~3800 m depth remained isolated from better-ventilated northern-sourced water masses until after the resumption of North Atlantic Deep Water (NADW) formation at the onset of the Bølling-Allerod, which led to the propagation of NADW into the South Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiproxy geologic records of d18O and Mg/Ca in fossil foraminifera from sediments under the Eastern Pacific Warm Pool (EPWP) region west of Central America document variations in upper ocean temperature, pycnocline strength, and salinity (i.e., net precipitation) over the past 30 kyr. Although evident in the paleotemperature record, there is no glacial-interglacial difference in paleosalinity, suggesting that tropical hydrologic changes do not respond passively to high-latitude ice sheets and oceans. Millennial variations in paleosalinity with amplitudes as high as 4 practical salinity units occur with a dominant period of 3-5 ky during the glacial/deglacial interval and 1.0-1.5 ky during the Holocene. The amplitude of the EPWP paleosalinity changes greatly exceeds that of published Caribbean and western tropical Pacific paleosalinity records. EPWP paleosalinity changes correspond to millennial-scale climate changes in the surface and deep Atlantic and the high northern latitudes, with generally higher (lower) paleosalinity during cold (warm) events. In addition to Intertropical Convergence Zone (ITCZ) dynamics, which play an important role in tropical hydrologic variability, changes in Atlantic-Pacific moisture transport, which is closely linked to ITCZ dynamics, may also contribute to hydrologic variations in the EPWP. Calculations of interbasin salinity average and interbasin salinity contrast between the EPWP and the Caribbean help differentiate long-term changes in mean ITCZ position and Atlantic-Pacific moisture transport, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results of an inorganic geochemical pore water and sediment study conducted on Quaternary sediments from the western Arctic Ocean. The sediment cores were recovered in 2008 from the southern Mendeleev Ridge during RV Polarstern Expedition ARK-XXIII/3. With respect to sediment sources and depositional processes, peaks in Ca/Al, Mg/Al, Sr/Al and Sr/Mg indicate enhanced input of both ice-rafted (mainly dolomite) and biogenic carbonate during deglacial warming phases. Distinct and repetitive brown layers enriched in Mn (oxyhydr)oxides occur mostly in association with these carbonate-rich intervals. For the first time, we show that the brown layers are also consistently enriched in scavenged trace metals Co, Cu, Mo and Ni. The bioturbation patterns of the brown layers, specifically well-defined brown burrows into the underlying sediments, support formation close to the sediment-water interface. The Mn and trace metal enrichments were probably initiated under warmer climate conditions. Both river runoff and melting sea ice delivered trace metals to the Arctic Ocean, but also enhanced seasonal productivity and organic matter export to the sea floor. As Mn (oxyhydr)oxides and scavenged trace metals were deposited at the sea floor, a co-occurring organic matter "pulse" triggered intense diagenetic Mn cycling at the sediment-water interface. These processes resulted in the formation of Mn and trace metal enrichments, but almost complete organic matter degradation. As warmer conditions ceased, reduced riverine runoff and/or a solid sea ice cover terminated the input of riverine trace metal and fresh organic matter, and greyish-yellowish sediments poor in Mn and trace metals were deposited. Oxygen depletion of Arctic bottom waters as potential cause for the lack of Mn enrichments during glacial intervals is highly improbable. While the original composition and texture of the brown layers resulted from specific climatic conditions (including transient Mn redox cycling at the sediment-water interface), pore water data show that early diagenetic Mn redistribution is still affecting the organic-poor sediments in several meters depth. Given persistent steady state diagenetic conditions, purely authigenic Mn-rich brown layers may form, while others may completely vanish. The degree of diagenetic Mn redistribution largely depends on the depositional environment within the Arctic Ocean, the availability of Mn and organic matter, and seems to be recorded by the Co/Mo ratios of single Mn-rich layers. We conclude that brown Arctic sediment layers are not necessarily synchronous features, and correlating them across different parts of the Arctic Ocean without additional age control is not recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstruction of the postglacial palaeoenvironmental evolution was the main objective of marine geological investigations in the Scorcsby Sund fjord system. For this purpose, samples of marine sediments, taken on RV Polarstern cruises ARK-V/3b and ARK-VII/3b in 1988 and 1990, have been analysed. All investigated fjord sediments are paratills. However, remarkable changes in sediment fabric and composition occur with depth in cores. They are attributable to different modes of sediment deposition. Therefore, a subdivision of the postglacial palaeoenvironmental history into periods of considerably different sedimentary conditions is feasible. The change of sedimentary fades with time is interpreted by deposition under changing climatic conditions during the postglacial. Displacements of cyclonic and anticyclonic centers in the atmosphere change amount of precipitation at the east coast of Greenland. Precipitation strongly influences extension of local ice caps of coastal areas and duration of coverage of the fjords by sea ice. These factors again control the sedimentary regime in the fjord system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution study of benthic foraminiferal assemblages was performed on a ca. eight metre long sediment core from Gullmar Fjord on the west coast of Sweden. The results of 210Pb- and AMS 14C-datings show that the record includes the two warmest climatic episodes of the last 1500 years: the Medieval Warm Period (MWP) and the recent warming of the 20th century. Both periods are known to be anomalously warm and associated with positive NAO winter indices. Benthic foraminiferal successions of both periods are compared in order to find faunal similarities and common denominators corresponding to past climate changes. During the MWP, Adercotryma glomerata, Cassidulina laevigata and Nonionella iridea dominated the assemblages. Judging from dominance of species sensitive to hypoxia and the highest faunal diversity for the last ca. 2400 years, the foraminiferal record of the MWP suggests an absence of severe low oxygen events. At the same time, faunas and d13C values both point to high primary productivity and/or increased input of terrestrial organic carbon into the fjord system during the Medieval Warm Period. Comparison of the MWP and recent warming revealed different trends in the faunal record. The thin-shelled foraminifer N. iridea was characteristic of the MWP, but became absent during the second half of the 20th century. The recent Skagerrak-Kattegat fauna was rare or absent during the MWP but established in Gullmar Fjord at the end of the Little Ice Age or in the early 1900s. Also, there are striking differences in the faunal diversity and absolute abundances of foraminifera between both periods. Changes in primary productivity, higher precipitation resulting in intensified land runoff, different oxygen regimes or even changes in the fjord's trophic status are discussed as possible causes of these faunal differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated interpretation of multi-beam bathymetric, sediment-penetrating acoustic (PARASOUND) and seismic data show a multiple slope failure on the northern European continental margin, north of Spitsbergen. The first slide event occurred during MIS 3 around 30 cal. ka BP and was characterised by highly dynamic and rapid evacuation of ca. 1250 km**3 of sediment from the lower to the upper part of the continental slope. During this event, headwalls up to 1600 m high were created and ca. 1150 km**3 material from hemi-pelagic sediments and from the lower pre-existing trough mouth fan has been entrained and transported into the semi-enclosed Sophia Basin. This megaslide event was followed by a secondary evacuation of material to the Nansen Basin by funnelling of the debris through the channel between Polarstern Seamount and the adjacent continental slope. The main slide debris is overlain by a set of fining-upward sequences as evidence for the associated suspension cloud and following minor failure events. Subsequent adjustment of the eastern headwalls led to failure of rather soft sediments and creation of smaller debris flows that followed the main slide surficial topography. Discharge of the Hinlopen ice stream during the Last Glacial Maximum and the following deglaciation draped the central headwalls and created a fan deposit of glacigenic debris flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multivariate statistical analysis on the kaolinite/chlorite ratios from 20 South Atlantic sediment cores allowed for the extraction of two processes controlling the fluctuations of the kaolinite/chlorite ratio during the last 130,000 yrs, (1) the relative strength of North Atlantic Deep Water (NADW) inflow into the South Atlantic Ocean and (2) the influx of aeolian sediments from the south African continent. The NADW fluctuation can be traced in the entire deep South Atlantic while the dust signal is restricted to the vicinity of South Africa. Our data indicate that NADW formation underwent significant changes in response to glacial/interglacial climate changes with enhanced export to the Southern Hemisphere during interglacials. The most pronounced phases with Enhanced South African Dust Export (ESADE) occurred during cold Marine Isotope Stage (MIS) 5d and across the Late Glacial/Holocene transition from 16 ka to 4 ka (MIS 2 to 1). This particular pattern is attributed to the interaction of Antarctic Sea Ice extent, the position of the westerlies and the South African monsoon system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological and geochemical proxies. Radiocarbon and Pb/Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~ 1,400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the "alder high" that occurred in the region ~ 4.0 cal ka BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were therefore archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Neogene stratigraphy of southern Victoria Land Basin is revealed in coastal and offshore drill cores and a network of seismic data in McMurdo Sound, Antarctica. These data preserve a record of ice sheet response to global climate variability and progressive cooling through the past 5 million years. Application of a composite standard age model for diatom event stratigraphy to the McMurdo Sound drill cores provides an internally precise mechanism to correlate stratigraphic data and derive an event history for the basin. These marine records are indirectly compared to data obtained from geological outcrop in the Transantarctic Mountains to produce an integrated history of Antarctic Ice Sheet response to climate variability from the early Pliocene to Recent. Four distinct chronostratigraphic intervals reflect stages and steps in a transition from a relatively warm early Pliocene Antarctic coastal climate to modern cold polar conditions. Several of these stages and steps correlate with global events identified via geochemical proxy data recovered from deep ocean cores in mid to low latitudes. These correlations allow us to consider linkages between the high southern latitudes and tropical regions and establish a temporal framework to examine leads and lags in the climate system through the late Neogene and Quaternary. The relative influence of climate-tectonic feedbacks is discussed in light of glacial erosion and isostatic rebound that also influence the history along the Southern Victoria Land coastal margin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution records of coarse lithic content and oxygen isotope have been obtained in a piston core from the Irminger Basin. The last glacial period is characterized by numerous periods of increased iceberg discharges originating partly from Iceland and corresponding to millennial-scale instabilities of the coastal ice sheets and ice shelves in the Nordic area. A comparison with midlatitude sediment cores shows that ice-rafted material corresponding to the Heinrich events was deposited synchronously from 40° to 60°N. There are thus two oscillating systems: every 5-10 kyr massive iceberg armadas are released from large continental ice caps, whereas more frequent instabilities of the coastal ice sheets in the high latitude regions occur every 1.2-3.8 kyr. At the time of the Heinrich events the synchroneity of the response from all the northern hemisphere ice sheets attests the existence of strong interactions between the two systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the large variety of particulates in the atmosphere, calcic mineral dust particles have highly reactive surfaces that undergo heterogeneous reactions with nitrogen oxides contiguously. The association between Ca2+, an important proxy indicator of mineral dust and NO3-, a dominant anion in the Antarctic snow pack was analysed. A total of 41 snow cores (~ 1 m each) that represent snow deposited during 2008-2009 were studied along coastal-inland transects from two different regions - the Princess Elizabeth Land (PEL) and central Dronning Maud Land (cDML) in East Antarctica. Correlation statistics showed a strong association (at 99 % significance level) between NO3- and Ca2+ at the near-coastal sections of both PEL (r = 0.72) and cDML (r = 0.76) transects. Similarly, a strong association between these ions was also observed in snow deposits at the inland sections of PEL (r = 0.8) and cDML (r = 0.85). Such systematic associations between Ca2+ and NO3- is attributed to the interaction between calcic mineral dust and nitrogen oxides in the atmosphere, leading to the possible formation of calcium nitrate (Ca(NO3)2). Forward and back trajectory analyses using HYSPLIT model v. 4 revealed that Southern South America (SSA) was an important dust emitting source to the study region, aided by the westerlies. Particle size distribution showed that over 90 % of the dust was in the range < 4 µm, indicating that these dust particles reached the Antarctic region via long range transport from the SSA region. We propose that the association between Ca2+ and NO3- occurs during the long range transport due to the formation of Ca(NO3)2. The Ca(NO3)2 thus formed in the atmosphere undergo deposition over Antarctica under the influence of anticyclonic polar easterlies. However, influence of local dust sources from the nunataks in cDML evidently mask such association in the mountainous region. The study indicates that the input of dust-bound NO3- may contribute a significant fraction of the total NO3- deposited in Antarctic snow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last glacial termination, the upper North Pacific Ocean underwent dramatic and rapid changes in oxygenation that lead to the transient intensification of oxygen minimum zones (OMZs), recorded by the widespread occurrence of laminated sediments on circum-Pacific continental margins. We present a new laminated sediment record from the mid-depth (1100 m) northern Bering Sea margin that provides insight into these deglacial OMZ maxima with exceptional, decadal-scale detail. Combined ultrahigh-resolution micro-X-ray-fluorescence (micro-XRF) data and sediment facies analysis of laminae reveal an alternation between predominantly terrigenous and diatom-dominated opal sedimentation. The diatomaceous laminae are interpreted to represent spring/summer productivity events related to the retreating sea ice margin.We identified five laminated sections in the deglacial part of our site. Lamina counts were carried out on these sections and correlated with the Bølling-Allerød and Preboreal phases in the North Greenland Ice Core (NGRIP) oxygen isotope record, indicating an annual deposition of individual lamina couplets (varves). The observed rapid decadal intensifications of anoxia, in particular within the Bølling-Allerød, are tightly coupled to short-term warm events through increases in regional export production. This dependence of laminae formation on warmer temperatures is underlined by a correlation with published Bering Sea sea surface temperature records and d18O data of planktic foraminifera from the Gulf of Alaska. The rapidity of the observed changes strongly implies a close atmospheric teleconnection between North Pacific and North Atlantic regions.We suggest that concomitant increases in export production and subsequent remineralization of organic matter in the Bering Sea, in combination with oxygen-poor waters entering the Being Sea, drove down oxygen concentrations to values below 0.1ml/l and caused laminae preservation. Calculated benthic-planktic ventilation ages show no significant variations throughout the last deglaciation, indicating that changes in formation rates or differing sources of North Pacific mid-depth waters are not prime candidates for strengthening the OMZ at our site. The age models established by our correlation procedure allow for the determination of calendar age control points for the Bølling-Allerød and the Preboreal that are independent of the initial radiocarbon-based chronology. Resulting surface reservoir ages range within 730-990 yr during the Bølling-Allerød, 800-1100 yr in the Younger Dryas, and 765-775 yr for the Preboreal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results from two deep sea cores from northeast of Newfoundland at 1251 and 2527 m water depth, respectively, indicate that during the time period from 160,000 to 10,000 years BP, ice rafting events in the Labrador Sea were accompanied by rapid variations in deep and surface water circulation. Twelve ice-rafting events occurred, each coinciding with high concentrations of detrital carbonate and oxygen isotopic depletion of both surface and bottom waters. Eleven of these can be correlated with the North Atlantic Heinrich events H1-H11. The remaining very conspicuous ice-rafting event took place early in MIS substage 5e, at a time when the planktic faunal assemblage suggests marked warming of the sea surface. In the shallower core, benthic d13C values rise from a minimum during the deglaciation to peak substage 5e values following the last ice-rafting event, indicating that the ventilation of intermediate depths was renewed after the deglaciation was complete and continued throughout substage 5e. The benthic foraminifera suggest that this well-ventilated water mass was comparable to the modern Labrador Sea Water (LSW). The benthic faunas suggest that a relatively warm intermediate water mass entered the SE Labrador Sea during Heinrich events. Generally low benthic d13C values indicate that this water mass was poorly ventilated and rich in inorganic nutrients. Isotope data and benthic faunal distributions indicate that North Atlantic Deep Water (NADW) formed in the Norwegian-Greenland Sea reached the SE Labrador Sea between the Heinrich events.