952 resultados para hydrogels free-radical retrograde-precipitation polymerization
Resumo:
Les brosses de polyélectrolytes font l’objet d’une attention particulière pour de nombreuses applications car elles présentent la capacité de changer de conformation et, par conséquent, de propriétés de surface en réponse aux conditions environnementales appliquées. Le contrôle des principaux paramètres de ces brosses telles que l'épaisseur, la composition et l'architecture macromoléculaire, est essentiel pour obtenir des polymères greffés bien définis. Ceci est possible avec la Polymérisation Radicalaire par Transfert d’Atomes - Initiée à partir de la Surface (PRTA-IS), qui permet la synthèse de brosses polymériques de manière contrôlée à partir d’une couche d'amorceurs immobilisés de manière covalente sur une surface. Le premier exemple d’une synthèse directe de brosses de poly(acide acrylique) (PAA) par polymérisation radicalaire dans l’eau a été démontré. Par greffage d’un marqueur fluorescent aux brosses de PAA et via l’utilisation de la microscopie de fluorescence par réflexion totale interne, le dégreffage du PAA en temps réel a pu être investigué. Des conditions environnementales de pH ≥ 9,5 en présence de sel, se sont avérées critiques pour la stabilité de la liaison substrat-amorceur, conduisant au dégreffage du polymère. Afin de protéger de l’hydrolyse cette liaison substrat-amorceur sensible et prévenir le dégreffage non souhaité du polymère, un espaceur hydrophobique de polystyrène (PS) a été inséré entre l'amorceur et le bloc de PAA stimuli-répondant. Les brosses de PS-PAA obtenues étaient stables pour des conditions extrêmes de pH et de force ionique. La réponse de ces brosses de copolymère bloc a été étudiée in situ par ellipsométrie, et le changement réversible de conformation collapsée à étirée, induit par les variations de pH a été démontré. De plus, des différences de conformation provenant des interactions du bloc de PAA avec des ions métalliques de valence variable ont été obtenues. Le copolymère bloc étudié semble donc prometteur pour la conception de matériaux répondant rapidement a divers stimuli. Par la suite, il a été démontré qu’un acide phosphonique pouvait être employé en tant qu’ amorceur PRTA-IS comme alternative aux organosilanes. Cet amorceur phosphonate a été greffé pour la première fois avec succès sur des substrats de silice et une PRTA-IS en milieux aqueux a permis la synthèse de brosses de PAA et de poly(sulfopropyl méthacrylate). La résistance accrue à l’hydrolyse de la liaison Sisubstrat-O- Pamorceur a été confirmée pour une large gamme de pH 7,5 à 10,5 et a permis l’étude des propriétés de friction des brosses de PAA sous différentes conditions expérimentales par mesure de forces de surface. Malgré la stabilité des brosses de PAA à haute charge appliquée, les études des propriétés de friction ne révèlent pas de changement significatif du coefficient de friction en fonction du pH et de la force ionique.
Resumo:
Protein oxidation within cells exposed to oxidative free radicals has been reported to occur in an uninhibited manner with both hydroxyl and peroxyl radicals. In contrast, THP-1 cells exposed to peroxyl radicals (ROO center dot) generated by thermo decomposition of the azo compound AAPH showed a distinct lag phase of at least 6 h, during which time no protein oxidation or cell death was observed. Glutathione appears to be the source of the lag phase as cellular levels were observed to rapidly decrease during this period. Removal of glutathione with buthionine sulfoxamine eliminated the lag phase. At the end of the lag phase there was a rapid loss of cellular MTT reducing activity and the appearance of large numbers of propidium iodide/annexin-V staining necrotic cells with only 10% of the cells appearing apoptotic (annexin-V staining only). Cytochrome c was released into the cytoplasm after 12 h of incubation but no increase in caspase-3 activity was found at any time points. We propose that the rapid loss of glutathione caused by the AAPH peroxyl radicals resulted in the loss of caspase activity and the initiation of protein oxidation. The lack of caspase-3 activity appears to have caused the cells to undergo necrosis in response to protein oxidation and other cellular damage. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Free radicals from one-electron oxidation of the antimalarial drug pyronaridine have been studied by pulse radiolysis. The results show that pyronaridine is readily oxidised to an intermediate semi-iminoquine radical by inorganic and organic free radicals, including those derived from tryptophan and acetaminophen. The pyronaridine radical is rapidly reduced by both ascorbate and caffeic acid. The results indicate that the one-electron reduction potential of the pyronaridine radical at neutral pH lies between those of acetaminophen (707 mV) and caffeic acid (534 mV). The pyronaridine radical decays to produce the iminoquinone, detected by electrospray mass spectrometry, in a second-order process that density functional theory (DFT) calculations (UB3LYP/6-31+G*) suggest is a disproportionation reaction. Important calculated dimensions of pyronaridine, its phenoxyl and aminyl radical, as well as the iminoquinone, are presented.
Resumo:
The synthesis of doubly thermoresponsive PPO-PMPC-PNIPAM triblock copolymer gelators by atom transfer radical polymerization using a PPO-based macroinitiator is described. Provided that the PPO block is sufficiently long, dynamic light scattering and differential scanning calorimetry studies confirm the presence of two separate thermal transitions corresponding to micellization and gelation, as expected. However, these ABC-type triblock copolymers proved to be rather inefficient gelators: free-standing gels at 37 degrees C required a triblock copolymer concentration of around 20 wt%. This gelator performance should be compared with copolymer concentrations of 6-7 wt% required for the PNIPAM-PMPC-PNIPAM triblock copolymers reported previously. Clearly, the separation of micellar self-assembly from gel network formation does not lead to enhanced gelator efficiencies, at least for this particular system. Nevertheless, there are some features of interest in the present study. In particular, close inspection of the viscosity vs temperature plot obtained for a PPO43-PMPC160-PNIPAM(81) triblock copolymer revealed a local minimum in viscosity. This is consistent with intramicelle collapse of the outer PNIPAM blocks prior to the development of the intermicelle hydrophobic interactions that are a prerequisite for macroscopic gelation.
Resumo:
Free phenolic acids were extracted from a laboratory-produced sample of green malt. Aliquots of the phenolic acid extract were heated from 25 to 110°C over 27 h, representative of a commercial kilning regime. Samples were taken at regular intervals throughout heating and were assessed for changes in antioxidant activity by both the 2,2(prime)-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical-cation scavenging (ABTS(^•+)) and the ferric-reducing antioxidant potential (FRAP) assays. Changes in the profile of the phenolic acids of the extracts were determined by HPLC. Overall, there was a decrease in both antioxidant activity level and the level of phenolic acids, but as the temperature increased from 80 to 100°C, there was an increase in both the antioxidant activity level and the level of detected phenolic acids.
Resumo:
Water-soluble cationic copolymers and hydrogels were synthesized by radical copolymerization of [2-(methacryloyloxy)ethyl]trimetilylammonium chloride (MADQUAT) and 2-hydroxyethylacrylate (HEA). The kinetics of copolymerization has been studied and the reactivity ratios were determined. It was found that MADQUAT exhibits higher reactivity in copolymerization. The complexation between linear MADQUAT-HEA and linear poly(acrylic acid) (PAA) has been studied in aqueous solutions at different pH. It results in the formation of insoluble polyelectrolyte complexes, whose composition and stability to aggregate depends on MADQUAT content in copolymers and pH. The hydrogels were synthesized by three-dimensional radical copolymerization of MADQUAT and HEA in the presence of a crosslinker. The effects of the feed mixture composition on yield and swelling properties of the hydrogels were studied. The interactions of these hydrogels with linear PAA result in formation of gel-polyelectrolyte complexes and contraction of the samples. It was found that the contraction depends on copolymer composition, PAA molecular weight, and solution pH. (c) 2006 Wiley Periodicals, Inc.
Resumo:
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.
Resumo:
Pluronic F127 diacrylate (F127DA) is a bifunctional acrylate and as such it should in principle produce macroscopically cross-linked materials; however, its photopolymerization in water does not lead to 3D-extended hydrogels. The main species present after photopolymerization appear to be cross-linked micelles, which indicates that the micellar morphology of F127DA has a template effect on the polymerization. The structural analogy causes the physical state of precursor and polymerized materials to be very similar for a wide range of concentrations (5–25% wt) and temperatures (10–37 °C). Also the long-range morphology of F127DA appears to have a template effect: samples photopolymerized in a micellar gel state and redispersed at high concentration (25% wt) show a long-range organization that depended on the concentration and therefore on the order of the precursor.
Resumo:
Plant cell growth and stress signaling require Ca2+ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH_. In root cells, extracellular OH_ activates a plasma membrane Ca2+-permeable conductance that permits Ca2+ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca2+-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH_-activated Ca2+- and K+-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca2+ in response to OH_. An OH_-activated Ca2+ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca2+-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca2+ in plants.
Resumo:
General circulation models predict a rapid decrease in sea ice extent with concurrent increases in near surface air temperature and precipitation in the Arctic over the 21st century. This has led to suggestions that some Arctic land ice masses may experience an increase in accumulation due to enhanced evaporation from a seasonally sea ice free Arctic Ocean. To investigate the impact of this phenomenon on Greenland ice sheet climate and surface mass balance (SMB) a regional climate model, HadRM3, was used to force an insolation-temperature melt SMB model. A set of experiments designed to investigate the role of sea ice independently from sea surface temperature (SST) forcing are described. In the warmer and wetter SI + SST simulation Greenland experiences a 23% increase in winter SMB but 65% reduced summer SMB, resulting in a net decrease in the annual value. This study shows that sea ice decline contributes to the increased winter balance, causing 25% of the increase in winter accumulation; this is largest in eastern Greenland as the result of increased evaporation in the Greenland Sea. These results indicate that the seasonal cycle of Greenland's SMB will increase dramatically as global temperatures increase, with the largest changes in temperature and precipitation occurring in winter. This demonstrates that the accurate prediction of changes in sea ice cover is important for predicting Greenland SMB and ice sheet evolution.
Resumo:
The ability of the HiGEM climate model to represent high-impact, regional, precipitation events is investigated in two ways. The first focusses on a case study of extreme regional accumulation of precipitation during the passage of a summer extra-tropical cyclone across southern England on 20 July 2007 that resulted in a national flooding emergency. The climate model is compared with a global Numerical Weather Prediction (NWP) model and higher resolution, nested limited area models. While the climate model does not simulate the timing and location of the cyclone and associated precipitation as accurately as the NWP simulations, the total accumulated precipitation in all models is similar to the rain gauge estimate across England and Wales. The regional accumulation over the event is insensitive to horizontal resolution for grid spacings ranging from 90km to 4km. Secondly, the free-running climate model reproduces the statistical distribution of daily precipitation accumulations observed in the England-Wales precipitation record. The model distribution diverges increasingly from the record for longer accumulation periods with a consistent under-representation of more intense multi-day accumulations. This may indicate a lack of low-frequency variability associated with weather regime persistence. Despite this, the overall seasonal and annual precipitation totals from the model are still comparable to those from ERA-Interim.
Resumo:
Hydrogels are polymeric materials used in many pharmaceutical and biomedical applications due to their ability to form 3D hydrophilic polymeric networks, which can absorb large amounts of water. In the present work, polyethylene glycols (PEG) were introduced into the hydrogel liquid phase in order to improve the mechanical properties of hydrogels composed of 2-hydroxyethylacrylate and 2-hydroxyethylmethacrylate (HEA–HEMA) synthesized with different co-monomer compositions and equilibrated in water or in 20 % water–PEG 400 and 600 solutions. The thermoanalytical techniques [differential scanning calorimetry (DSC) and thermogravimetry (TG)] were used to evaluate the amount and properties of free and bound water in HEA–HEMA hydrogels. The internal structure and the mechanical properties of hydrogels were studied using scanning electron microscopy and friability assay. TG “loss-on-drying” experiments were applied to study the water-retention properties of hydrogels, whereas the combination of TG and DSC allowed estimating the total amount of freezable and non-freezing water in hydrogels. The results show that the addition of viscous co-solvent (PEG) to the liquid medium results in significant improvement of the mechanical properties of HEA–HEMA hydrogels and also slightly retards the water loss from the hydrogels. A redistribution of free and bound water in the hydrogels equilibrated in mixed solutions containing 20 vol% of PEGs takes place.
Resumo:
Progress Report from the Strategic Sanctuary for the Destruction of Free Will presents a new work combining film, music and installation that juxtaposes the setting of the institution with the aesthetics of psychedelia.Progress Report from the Strategic Sanctuary for the Destruction of Free Will is an installation, film and sound work that takes over the gallery. Using plain white card, it distorts the structure of the gallery’s architecture, producing a paranoid shrunken space. Inside this space, performers in cardboard costumes re-enact abstracted, broken gestures drawn from video documentation of acid trips, psychedelic dancing, rehab sessions and radical psychotherapy workshops. Progress Report from the Strategic Sanctuary for the Destruction of Free Will has been formed through Pil and Galia Kollectiv’s research into the anti-psychiatry movement, their interests in counter cultural movements and their studies around biopolitics and the proliferation of societal medication. In 1958, having had a life changing experience with LSD, former alcoholic Charles Dederich founded Synanon, a drug rehabilitation program based on residential care and an aggressive form of group therapy called ‘The Game’. The organisation gradually evolved into a controversial alternative community, described in a critical pamphlet as creating Strategic Sanctuaries for the Destruction of Free Will, “a subversive program for mixing delinquents and lefties”. In 1984, anti-psychiatrist R. D. Laing described tranquillizers as chemical straight jackets. With our growing understanding of the plasticity of the brain and the potential to shape it, the tension between liberation and control in the struggle over the mind continues to define our relationship to labour, culture and production. Interrogating these ideas, the exhibition poses the question of whether a collective body can overcome the solipsism of the incommunicable experience of the individual mind.
Resumo:
The molecular architecture of azopolymers may be controlled via chemical synthesis and with selection of a suitable film-forming method, which is important for improving their properties for practical uses. Here we address the main challenge of combining the photoinduced birefringence features of azopolymers with the higher thermal and mechanical stabilities of poly(methyl methacrylate) (PMMA) using Atom Transfer Radical Polymerization (ATRP) to synthesize diblock- and triblock-copolymers of an azomonomer and the monomer methyl methacrylate. Langmuir-Blodgett (LB) films made with the copolymers mixed with cadmium stearate displayed essentially the same optically induced birefringence characteristics, in terms of maximum and residual birefringence and time for writing, as the mixed LB films with the homopolymer poly[4-(N-ethyl-N-(2-methacryloxyethyl))amino-2`-chloro-4`-nitroazobenzene] (HPDR13), also synthesized via ATRP. In fact, the controlled architecture of HPDR13 chains led to Langmuir films that could be more closely packed and reach higher collapse pressures than the corresponding films obtained with HPDR13-conv synthesized via conventional radicalar polymerization. This allowed LB films to be fabricated from neat HPDR13, which was not possible with HPDR13-conv. The enhanced organization in the LB films produced with controlled azopolymer chains, however, led to a smaller free volume available for isomerization of the azochromophores, thus yielding a lower photoinduced birefringence than in the HPDR13-conv films. The combination of ATRP synthesis and LB technology is then promising to obtain optical storage in films with improved thermal and mechanical processabilities, though a further degree of control must be sought to exploit film organization while maintaining the necessary free volume in the films. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The polymerization of the intercalated aniline ions was studied in three different clays, Swy2-montmorillonite (MMT), synthetic mica-montmorillonite (Synl) and pillarized Swy2-montmorillonite (PILC). PANI is formed between the MMT and Syn1 clay layers, being confirmed by the shift of d(001) peak in the X-ray pattern. X-ray Absorption near to Si K edge (Si K XANES) data show that the structures of clays are preserved after the polymerization process and in addition to the SEM images show that morphologies of the clays are maintained after polymerization, indicating no polymerization in their external surface. UV-vis-NIR and resonance Raman data display that the PANI formed in Syn1 galleries has higher amount of phenazinic rings than observed for PANI intercalated in montmorillonite (MMT) clay. No polymer formation was detected in the PILC. N K XANES and EPR spectroscopies show the presence of azo and radical nitrogen in intercalated PAN! chains. Hence, the results are rationalized considering the structural differences between the clays for understanding the role of the anilinium polymerization within the clays galleries. (C) 2011 Elsevier B.V. All rights reserved.