978 resultados para human specific retransposons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives-Peroxisome proliferator-activated receptor beta/delta (PPAR beta/delta) is a nuclear receptor found in platelets. PPAR beta/delta agonists acutely inhibit platelet function within a few minutes of addition. As platelets are anucleated, the effects of PPAR beta/delta agonists on platelets must be nongenomic. Currently, the particular role of PPAR beta/delta receptors and their intracellular signaling pathways in platelets are not known. Methods and Results-We have used mice lacking PPAR beta/delta (PPAR beta/delta(-/-)) to show the effects of the PPAR beta/delta agonist GW501516 on platelet adhesion and cAMP levels are mediated specifically by PPAR beta/delta, however GW501516 had no PPAR beta/delta-specific effect on platelet aggregation. Studies in human platelets showed that PKC alpha, which can mediate platelet activation, was bound and repressed by PPAR beta/delta after platelets were treated with GW501516. Conclusions-These data provide evidence of a novel mechanism by which PPAR receptors influence platelet activity and thereby thrombotic risk. (Arterioscler Thromb Vasc Biol. 2009; 29: 1871-1873.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipin-1 regulates lipid metabolism by way of its function as an enzyme in the triglyceride synthesis pathway and as a transcriptional coregulatory protein and is highly up-regulated in alcoholic fatty liver disease. In the present study, using a liver-specific lipin-1-deficient (lipin-1LKO) mouse model, we aimed to investigate the functional role of lipin-1 in the development of alcoholic steatohepatitis and explore the underlying mechanisms. Alcoholic liver injury was achieved by pair feeding wild-type and lipin-1LKO mice with modified Lieber-DeCarli ethanol-containing low-fat diets for 4 weeks. Surprisingly, chronically ethanol-fed lipin-1LKO mice showed markedly greater hepatic triglyceride and cholesterol accumulation, and augmented elevation of serum liver enzymes accompanied by increased hepatic proinflammatory cytokine expression. Our studies further revealed that hepatic removal of lipin-1 in mice augmented ethanol-induced impairment of hepatic fatty acid oxidation and lipoprotein production, likely by way of deactivation of peroxisome proliferator-activated receptor γ coactivator-1alpha, a prominent transcriptional regulator of lipid metabolism. Conclusions: Liver-specific lipin-1 deficiency in mice exacerbates the development and progression of experimental alcohol-induced steatohepatitis. Pharmacological or nutritional modulation of hepatic lipin-1 may be beneficial for the prevention or treatment of human alcoholic fatty liver disease. (Hepatology 2013; 58:1953-1963).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Human immunodeficiency virus (HIV)-infected children are at increased risk of infections caused by vaccine preventable pathogens, and specific immunization recommendations have been issued. METHODS: A prospective national multicenter study assessed how these recommendations are followed in Switzerland and how immunization history correlates with vaccine immunity. RESULTS: Among 87 HIV-infected children (mean age: 11.1 years) followed in the 5 Swiss university hospitals and 1 regional hospital, most (76%) had CD4 T cells >25%, were receiving highly active antiretroviral treatment (79%) and had undetectable viral load (60%). Immunization coverage was lower than in the general population and many lacked serum antibodies to vaccine-preventable pathogens, including measles (54%), varicella (39%), and hepatitis B (65%). The presence of vaccine antibodies correlated most significantly with having an up-to-date immunization history (P<0.05). An up-to-date immunization history was not related to age, immunologic stage, or viremia but to the referral medical center. CONCLUSIONS: All pediatricians in charge of HIV-infected children are urged to identify missing immunizations in this high-risk population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Dermatophytes are highly specialized fungi which are the most common agents of superficial mycoses in humans and animals. The particular ability of these microorganisms to invade and multiply within keratinized host structures is presumably linked to their secreted keratinolytic activity, which is therefore a major putative virulence attribute of these fungi. The overall adaptation and transcriptional response of dermatophytes during protein degradation and/or infection is largely unknown. Methods: A Trichophyton rubrum cDNA microarray was developed and used for the transcriptional analysis of T. rubrum and Arthroderma benhamiae cells during growth on protein substrates. Moreover, the gene expression profile in A. benhamiae cells was monitored during infection of guinea pigs. Results: T. rubrum and A. benhamiae cells activate a large set of genes encoding secreted endo- and exoproteases during growth on soy and keratin. In addition, other specifically induced factors with potential implication in protein utilization were identified, e.g. multiple transporters, metabolic enzymes, transcription factors and hypothetical proteins with unknown function. Notably however, the protease gene expression profile in the fungal cells during infection was significantly different from the pattern elicited during in vitro growth on keratin. Conclusions: Our results suggest specific functions of individual proteases during infection, which may not be restricted to the degradation of keratin. This first, broad in vivo transcriptional profiling approach in dermatophytes gives new molecular insights into pathogenicity associated adaptation mechanisms that make these microorganisms the most successful causitive agents of superficial mycoses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adaptive immune system plays a critical role in protection at the time of secondary infection. It does so through the rapid and robust reactivation of memory T cells which are maintained long-term, in a phenotypically heterogeneous state, following their primary encounter with Ag. Although most HLA-A*0201/influenza matrix protein(58-66)-specific CD8 T cells from healthy donors display characteristics typical of memory T cells, through our extensive phenotypic analysis we have further shown that up to 20% of these cells express neither the IL-7 receptor CD127 nor the costimulatory molecule CD28. In contrast to the majority of CD28(pos) cells, granzyme B and perforin were frequently expressed by the CD28(neg) cells, suggesting that they are effector cells. Indeed, these cells were able to kill target cells, in an Ag-specific manner, directly ex vivo. Thus, our findings demonstrate the remarkable long-term persistence in healthy humans of not only influenza-specific memory cells, but also of effector T cells. We further observed that granzyme B expression in influenza-specific CD8 T cells paralleled levels in the total CD8 T cell population, suggestive of Ag-nonspecific bystander activation. Sequencing of TCR alpha- and beta-chains showed that the TCR repertoire specific for this epitope was dominated by one, or a few, T cell clonotype per healthy donor. Moreover, our sequencing analysis revealed, for the first time in humans, that identical clonotypes can coexist as both memory and effector T cells, thereby supporting the principle of multipotent clonotypic differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since it is established that human chorionic gonadotropin (hCG) affects testosterone production and release in the human body, the use of this hormone as a performance enhancing drug has been prohibited by the World Anti-Doping Agency. Nowadays, the only validated biomarker of a hCG doping is its direct quantification in urine. However, this specific parameter is subjected to large inter-individual variability and its determination is directly dependent on the reliability of hCG immunoassays used. In order to counteract these weaknesses, new biomarkers need to be evidenced. To address this issue, a pilot clinical study was performed on 10 volunteers submitted to 3 subsequent hCG injections. Blood and urine samples were collected during two weeks in order to follow the physiological effects on related compounds such as the steroid profile or hormones involved in the hypothalamo-pituitary axis. The hCG pharmacokinetic observed in all subjects was, as expected, prone to important inter-individual variations. Using ROC plots, level of testosterone and testosterone on luteinizing hormone ratio in both blood and urine were found to be the most relevant biomarker of a hCG abuse, regardless of inter-individual variations. In conclusion, this study showed the crucial importance of reliable quantification methods to assess low differences in hormonal patterns. In regard to these results and to anti-doping requirements and constraints, blood together with urine matrix should be included in the anti-doping testing program. Together with a longitudinal follow-up approach it could constitute a new strategy to detect a hCG abuse, applicable to further forms of steroid or other forbidden drug manipulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is a hormone secreted by the endocrine K-cells from the duodenum that stimulates glucose-induced insulin secretion. Here, we present the molecular characterization of the human pancreatic islet GIP receptor. cDNA clones for the GIP receptor were isolated from a human pancreatic islet cDNA library. They encoded two different forms of the receptor, which differed by a 27-amino acid insertion in the COOH-terminal cytoplasmic tail. The receptor protein sequence was 81% identical to that of the rat GIP receptor. When expressed in Chinese hamster lung fibroblasts, both forms of the receptor displayed high-affinity binding for GIP (180 and 600 pmol/l). GIP binding was displaced by &lt; 20% by 1 mumol/l glucagon, glucagon-like peptide (GLP-I)(7-36) amide, vasoactive intestinal peptide, and secretin. However exendin-4 and exendin-(9-39) at 1 mumol/l displaced binding by approximately 70 and approximately 100% at 10 mumol/l. GIP binding to both forms of the receptor induced a dose-dependent increase in intracellular cAMP levels (EC50 values of 0.6-0.8 nmol/l) but no elevation of cytoplasmic calcium concentrations. Interestingly, both exendin-4 and exendin-(9-39) were antagonists of the receptor, inhibiting GIP-induced cAMP formation by up to 60% when present at a concentration of 10 mumol/l. Finally, the physical and genetic chromosomal localization of the receptor gene was determined to be on 19q13.3, close to the ApoC2 gene. These data will help study the physiology and pathophysiology of the human GIP receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose/Objective: Tuberculosis (TB) is the second worldwide leading cause of death from an infectious disease after HIV infection. Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8 T-cells is controversial. We performed comprehensive functional and phenotypic characterizations of Mtb-specific CD8 T-cell responses in 273 subjects with either latent Mtb infection (LTBI) or active TB disease (TB) to assess their profile and relevance in TB. Materials and methods: Using multi-parametric flow cytometry, we assessed Mtb-specific CD8 T-cell functional (production of IFNgamma, IL-2 and TNF-alpha; proliferation capacity and cytotoxicity) and phenotypic (T-cell differentiation and exhaustion) profiles in cells isolated from peripheral blood and correlated these profiles with distinct clinical presentations. Results: Mtb-specific CD8 T-cells were detected in most TB patients and few LTBI subjects (65% and 15%, respectively; P < 0.00001) and were of similar magnitude with a comparable cytokines profile (IFNg+TNFa+IL2-) in both groups. Mtb-specific CD8 T-cells were mostly TEMRA (CD45RA+ CCR7-) co-expressing 2B4 and CD160 in LTBI subjects and mostly TEM (CD45RA-CCR7-) lacking PD-1/ CD160/2B4 in TB patients. Furthermore, Mtb-specific CD8 T-cells mostly expressed very little perforin and granulysin but contained granzymes A and B or lacked all these cytotoxic markers in TB and LTBI subjects, respectively. However, in vitro expanded Mtb-specific CD8 T-cells acquired perforin, granulysin and granzymes. Finally, Mtb-specific CD8 T-cell responses were more robust and prone to proliferate in patients with extrapulmonary compared to pulmonary TB. Conclusions: The clinical status and TB presentation are associated to specific profiles of Mtb-specific CD8 T-cell responses, thus indicating distinct dynamics between the mycobacteria, the CD8 T-cell response and the clinical outcome. Our data shed light on the controversial reached by studies performed in human and animal models, thus advancing the current knowledge on the complex dynamic of TB immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessing the contribution of promoters and coding sequences to gene evolution is an important step toward discovering the major genetic determinants of human evolution. Many specific examples have revealed the evolutionary importance of cis-regulatory regions. However, the relative contribution of regulatory and coding regions to the evolutionary process and whether systemic factors differentially influence their evolution remains unclear. To address these questions, we carried out an analysis at the genome scale to identify signatures of positive selection in human proximal promoters. Next, we examined whether genes with positively selected promoters (Prom+ genes) show systemic differences with respect to a set of genes with positively selected protein-coding regions (Cod+ genes). We found that the number of genes in each set was not significantly different (8.1% and 8.5%, respectively). Furthermore, a functional analysis showed that, in both cases, positive selection affects almost all biological processes and only a few genes of each group are located in enriched categories, indicating that promoters and coding regions are not evolutionarily specialized with respect to gene function. On the other hand, we show that the topology of the human protein network has a different influence on the molecular evolution of proximal promoters and coding regions. Notably, Prom+ genes have an unexpectedly high centrality when compared with a reference distribution (P = 0.008, for Eigenvalue centrality). Moreover, the frequency of Prom+ genes increases from the periphery to the center of the protein network (P = 0.02, for the logistic regression coefficient). This means that gene centrality does not constrain the evolution of proximal promoters, unlike the case with coding regions, and further indicates that the evolution of proximal promoters is more efficient in the center of the protein network than in the periphery. These results show that proximal promoters have had a systemic contribution to human evolution by increasing the participation of central genes in the evolutionary process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct identification as well as isolation of antigen-specific T cells became possible since the development of "tetramers" based on avidin-fluorochrome conjugates associated with mono-biotinylated class I MHC-peptide monomeric complexes. In principle, a series of distinct class I MHC-peptide tetramers, each labelled with a different fluorochrome, would allow to simultaneously enumerate as many unique antigen-specific CD8(+) T cells. Practically, however, only phycoerythrin and allophycocyanin conjugated tetramers have been generally available, imposing serious constraints for multiple labeling. To overcome this limitation, we have developed dextramers which are multimers based on a dextran backbone bearing multiple fluorescein and streptavidin moieties. Here we demonstrate the functionality and optimization of these new probes on human CD8(+) T cell clones with four independent antigen specificities. Their applications to the analysis of relatively low frequency antigen-specific T cells in peripheral blood, as well as their use in fluorescence microscopy, are demonstrated. The data show that dextramers produce a stronger signal than their fluoresceinated tetramer counterparts. Thus, these could become the reagents of choice as the antigen-specific T cell labeling transitions from basic research to clinical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD40L is one of the key molecules bridging the activation of specific T cells and the maturation of professional and nonprofessional antigen-presenting cells including B cells. CD4(+) T cells have been regarded as the major T-cell subset that expresses CD40L upon cognate activation; however, we demonstrate here that a putative CD8(+) helper T-cell subset expressing CD40L is induced in human and murine CD8(+) T cells in vitro and in mice immunized with antigen-pulsed dendritic cells. IL-12 and STAT4-mediated signaling was the major instructive cytokine signal boosting the ability of CD8(+) T cells to express CD40L both in vitro and in vivo. Additionally, TCR signaling strength modulated CD40L expression in CD8(+) T cells after primary differentiation in vitro as well as in vivo. The induction of CD40L in CD8(+) T cells regulated by IL-12 and TCR signaling may enable CD8(+) T cells to respond autonomously of CD4(+) T cells. Thus, we propose that under proinflammatory conditions, a self-sustaining positive feedback loop could facilitate the efficient priming of T cells stimulated by high affinity peptide displaying APCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This commentary reviews the data on HLA-A2-restricted CD8 T cells specific for peptide (540-548) derived from hTERT (human telomerase reverse transcriptase). Several studies have reported the successful generation of such T cells (1, 2, 3). However, tumor recognition was observed in some, but not all, studies. More data are required to elucidate whether hTERT peptide (540-548) -specific T cells can indeed recognize and destroy tumor cells. It would be highly useful if telomerase would emerge as a universal tumor antigen that can be targeted in the cancer immunotherapy of HLA-A2 positive patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given that retroposed copies of genes are presumed to lack the regulatory elements required for their expression, retroposition has long been considered a mechanism without functional relevance. However, through an in silico assay for transcriptional activity, we identify here >1,000 transcribed retrocopies in the human genome, of which at least approximately 120 have evolved into bona fide genes. Among these, approximately 50 retrogenes have evolved functions in testes, more than half of which were recruited as functional autosomal counterparts of X-linked genes during spermatogenesis. Generally, retrogenes emerge "out of the testis," because they are often initially transcribed in testis and later evolve stronger and sometimes more diverse spatial expression patterns. We find a significant excess of transcribed retrocopies close to other genes or within introns, suggesting that retrocopies can exploit the regulatory elements and/or open chromatin of neighboring genes to become transcribed. In direct support of this hypothesis, we identify 36 retrocopy-host gene fusions, including primate-specific chimeric genes. Strikingly, 27 intergenic retrogenes have acquired untranslated exons de novo during evolution to achieve high expression levels. Notably, our screen for highly transcribed retrocopies also uncovered a retrogene linked to a human recessive disorder, gelatinous drop-like corneal dystrophy, a form of blindness. These functional implications for retroposition notwithstanding, we find that the insertion of retrocopies into genes is generally deleterious, because it may interfere with the transcription of host genes. Our results demonstrate that natural selection has been fundamental in shaping the retrocopy repertoire of the human genome.