905 resultados para histone deacetylase 9 gene
Resumo:
Cataract is a known condition leading to opacification of the eye lens causing partial or total blindness. Mutations are known to cause autosomal dominant or recessive inherited forms of cataracts in humans, mice, rats, guinea pigs and dogs. The use of large-sized animal models instead of those using mice for the study of this condition has been discussed due to the small size of rodent lenses. Four juvenile-onset cases of bilateral incomplete immature nuclear cataract were recently observed in Romagnola cattle. Pedigree analysis suggested a monogenic autosomal recessive inheritance. In addition to the cataract, one of the cases displayed abnormal head movements. Genome-wide association and homozygosity mapping and subsequent whole genome sequencing of a single case identified two perfectly associated sequence variants in a critical interval of 7.2 Mb on cattle chromosome 28: a missense point mutation located in an uncharacterized locus and an 855 bp deletion across the exon 19/intron 19 border of the bovine nidogen 1 (NID1) gene (c.3579_3604+829del). RT-PCR showed that NID1 is expressed in bovine lenses while the transcript of the second locus was absent. The NID1 deletion leads to the skipping of exon 19 during transcription and is therefore predicted to cause a frameshift and premature stop codon (p.1164fs27X). The truncated protein lacks a C-terminal domain essential for binding with matrix assembly complexes. Nidogen 1 deficient mice show neurological abnormalities and highly irregular crystal lens alterations. This study adds NID1 to the list of candidate genes for inherited cataract in humans and is the first report of a naturally occurring mutation leading to non-syndromic catarct in cattle provides a potential large animal model for human cataract.
Resumo:
The PU.1 transcription factor is essential for myeloid development. We investigated if the microtubule-associated protein 1S (MAP1S) is a novel PU.1 target with a link to autophagy, a cellular recycling pathway. Comparable to PU.1, MAP1S expression was significantly repressed in primary AML blasts as compared to mature neutrophils. Accordingly, MAP1S expression was induced during neutrophil differentiation of CD34(+) progenitor and APL cells. Moreover, PU.1 bound to the MAP1S promoter and induced MAP1S expression during APL differentiation. Inhibiting MAP1S resulted in aberrant neutrophil differentiation and autophagy. Taken together, our findings implicate the PU.1-regulated MAP1S gene in neutrophil differentiation and autophagy control.
Resumo:
BACKGROUND TMPRSS2-ERG gene fusion is the most frequent genetic alteration in prostate cancer. However, information about its distribution in lymph node positive prostate cancers and the prognostic significance in these advanced tumors is unknown. METHODS Gene fusion status was determined by fluorescence in situ hybridization on a tissue-microarray constructed from 119 hormone-naïve nodal positive, surgically treated prostate cancers containing samples from the primary tumors and corresponding lymph node metastases. Data were correlated with various tumor features (Gleason score, stage, cancer volume, nodal tumor burden) and biochemical recurrence-free, disease-specific, and overall survival. RESULTS TMPRSS2-ERG fusion was detected in 43.5% of the primary tumors. Conversely, only 29.9% of the metastasizing components showed the fusion. Concordance in TMPRSS2-ERG status between primary tumors and metastases was 70.9% (Kappa 0.39); 20.9% and 8.1% of the patients showed the mutation solely in their primary tumors and metastases, respectively. TMPRSS2-ERG fusion was not correlated with specific histopathological tumor features but predicted favorable biochemical recurrence-free, disease-specific and overall survival independently when present in the primary tumor (P < 0.05 each). CONCLUSION TMPRSS2-ERG fusion is more frequent in primary prostate cancer than in corresponding metastases suggesting no selection of fusion-positive cells in the metastatic process. The gene fusion in primary tumors independently predicts favorable outcome.
Resumo:
Dandy-Walker-like malformation (DWLM) is the result of aberrant brain development and mainly characterized by cerebellar hypoplasia. DWLM affected dogs display a non-progressive cerebellar ataxia. Several DWLM cases were recently observed in the Eurasier dog breed, which strongly suggested a monogenic autosomal recessive inheritance in this breed. We performed a genome-wide association study (GWAS) with 9 cases and 11 controls and found the best association of DWLM with markers on chromosome 1. Subsequent homozygosity mapping confirmed that all 9 cases were homozygous for a shared haplotype in this region, which delineated a critical interval of 3.35 Mb. We sequenced the genome of an affected Eurasier and compared it with the Boxer reference genome and 47 control genomes of dogs from other breeds. This analysis revealed 4 private non-synonymous variants in the critical interval of the affected Eurasier. We genotyped these variants in additional dogs and found perfect association for only one of these variants, a single base deletion in the VLDLR gene encoding the very low density lipoprotein receptor. This variant, VLDLR:c.1713delC is predicted to cause a frameshift and premature stop codon (p.W572Gfs*10). Variants in the VLDLR gene have been shown to cause congenital cerebellar ataxia and mental retardation in human patients and Vldlr knockout mice also display an ataxia phenotype. Our combined genetic data together with the functional knowledge on the VLDLR gene from other species thus strongly suggest that VLDLR:c.1713delC is indeed causing DWLM in Eurasier dogs.
Resumo:
BACKGROUND & AIMS: The genetic background of alcoholic liver diseases and their complications are increasingly recognized. A common polymorphism in the neurocan (NCAN) gene, which is known to be expressed in neuronal tissue, has been identified as a risk factor for non-alcoholic fatty liver disease (NAFLD). We investigated if this polymorphism may also be related to alcoholic liver disease (ALD) and hepatocellular carcinoma (HCC). METHODS: We analysed the distribution of the NCAN rs2228603 genotypes in 356 patients with alcoholic liver cirrhosis, 126 patients with alcoholic HCC, 382 persons with alcohol abuse without liver damage, 362 healthy controls and in 171 patients with hepatitis C virus (HCV) associated HCC. Furthermore, a validation cohort of 229 patients with alcoholic cirrhosis (83 with HCC) was analysed. The genotypes were determined by LightSNiP assays. The expression of NCAN was studied by RT-PCR and immunofluorescence microscopy. RESULTS: The frequency of the NCAN rs2228603 T allele was significantly increased in patients with HCC due to ALD (15.1%) compared to alcoholic cirrhosis without HCC (9.3%), alcoholic controls (7.2%), healthy controls (7.9%), and HCV associated HCC (9.1%). This finding was confirmed in the validation cohort (15.7% vs. 6.8%, OR=2.53; 95%CI: 1.36-4.68; p=0.0025) and by multivariate analysis (OR=1.840; 95%CI: 1.22-2.78; p=0.004 for carriage of the rs2228603 T allele). In addition, we identified and localised NCAN expression in human liver. CONCLUSIONS: NCAN is not only expressed in neuronal tissue, but also in the liver. Its rs2228603 polymorphism is a risk factor for HCC in ALD, but not in HCV infection.
Resumo:
BACKGROUND: The understanding of molecular mechanisms leading to poor prognosis in pancreatic cancer may help develop treatment options. N-myc downstream-regulated gene-1 (NDRG1) has been correlated to better prognosis in pancreatic cancer. Therefore, we thought to analyze how the loss of NDRG1 affects progression in an orthotopic xenograft animal model of recurrence. METHODS: Capan-1 cells were silenced for NDRG1 (C(sil)) or transfected with scrambled shRNA (C(scr)) and compared for anchorage-dependent and anchorage-independent growth, invasion and tube formation in vitro. In an orthotopic xenograft model of recurrence tumors were grown in the pancreatic tail. The effect of NDRG1 silencing was evaluated on tumor size and metastasis. RESULTS: The silencing of NDRG1 in Capan-1 cells leads to more aggressive tumor growth and metastasis. We found faster cell growth, double count of invaded cells and 1.8-fold increase in tube formation in vitro. In vivo local tumors were 5.9-fold larger (p = 0.006) and the number of metastases was higher in animals with tumors silenced for NDRG1 primarily (3 vs. 1.1; p = 0.005) and at recurrence (3.3 vs. 0.9; p = 0.015). CONCLUSION: NDRG1 may be an interesting therapeutic target as its silencing in human pancreatic cancer cells leads to a phenotype with more aggressive tumor growth and metastasis.
Resumo:
11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.
Resumo:
Leopard Complex spotting occurs in several breeds of horses and is caused by an incompletely dominant allele (LP). Homozygosity for LP is also associated with congenital stationary night blindness (CSNB) in Appaloosa horses. Previously, LP was mapped to a 6 cm region on ECA1 containing the candidate gene TRPM1 (Transient Receptor Potential Cation Channel, Subfamily M, Member 1) and decreased expression of this gene, measured by qRT-PCR, was identified as the likely cause of both spotting and ocular phenotypes. This study describes investigations for a mutation causing or associated with the Leopard Complex and CSNB phenotype in horses. Re-sequencing of the gene and associated splice sites within the 105 624 bp genomic region of TRPM1 led to the discovery of 18 SNPs. Most of the SNPs did not have a predictive value for the presence of LP. However, one SNP (ECA1:108,249,293 C>T) found within intron 11 had a strong (P < 0.0005), but not complete, association with LP and CSNB and thus is a good marker but unlikely to be causative. To further localize the association, 70 SNPs spanning over two Mb including the TRPM1 gene were genotyped in 192 horses from three different breeds segregating for LP. A single 173 kb haplotype associated with LP and CSNB (ECA1: 108,197,355- 108,370,150) was identified. Illumina sequencing of 300 kb surrounding this haplotype revealed 57 SNP variants. Based on their localization within expressed sequences or regions of high sequence conservation across mammals, six of these SNPs were considered to be the most likely candidate mutations. While the precise function of TRPM1 remains to be elucidated, this work solidifies its functional role in both pigmentation and night vision. Further, this work has identified several potential regulatory elements of the TRPM1 gene that should be investigated further in this and other species.
Resumo:
Histone RNA 3' processing in vitro produces one or more 5' cleavage products corresponding to the mature histone mRNA 3' end, and a group of 3' cleavage products whose 5' ends are mostly located several nucleotides downstream of the mRNA 3' end. The formation of these 3' products is coupled to the formation of 5' products and dependent on the U7 snRNP and a heat-labile processing factor. These short 3' products therefore are a true and general feature of the processing reaction. Identical 3' products are also formed from a model RNA containing all spacer nucleotides downstream of the mature mRNA 3' end, but no sequences from the mature mRNA. Again, this reaction is dependent on both the U7 snRNP and a heat-labile factor. Unlike the processing with a full-length histone pre-mRNA, this reaction produces only 3' but no 5' fragments. In addition, product formation is inhibited by addition of cap structures at the model RNA 5' end, indicating that product formation occurs by 5'-3' exonucleolytic degradation. This degradation of a model 3' product by a 5'-3' exonuclease suggests a mechanism for the release of the U7 snRNP after processing by shortening the cut-off histone spacer sequences base paired to U7 RNA.
Resumo:
Histone pre-mRNA 3' processing is controlled by a hairpin element preceding the processing site that interacts with a hairpin-binding protein (HBP) and a downstream spacer element that serves as anchoring site for the U7 snRNP. In addition, the nucleotides following the hairpin and surrounding the processing site (ACCCA'CA) are conserved among vertebrate histone genes. Single to triple nucleotide mutations of this sequence were tested for their ability to be processed in nuclear extract from animal cells. Changing the first four nucleotides had no qualitative and little if any quantitative effects on histone RNA 3' processing in mouse K21 cell extract, where processing of this gene is virtually independent of the HBP. A gel mobility shift assay revealing HBP interactions and a processing assay in HeLa cell extract (where the contribution of HBP to efficient processing is more important) showed that only one of these mutations, predicted to extend the hairpin by one base pair, affected the interaction with HBP. Mutations in the next three nucleotides affected both the cleavage efficiency and the choice of processing sites. Analysis of these novel sites indicated a preference for the nucleotide 5' of the cleavage site in the order A > C > U > G. Moreover, a guanosine in the 3' position inhibited cleavage. The preference for an A is shared with the cleavage/polyadenylation reaction, but the preference order for the other nucleotides is different [Chen F, MacDonald CC, Wilusz J, 1995, Nucleic Acids Res 23:2614-2620].
Resumo:
A histone H4 gene from Ascaris lumbricoides contains an intron of approx. 2040 bp. Transcripts of the gene are spliced and polyadenylated. This is the first intron-containing H4 gene described for a metazoan. Notably, H4 mRNA from another nematode, Caenorhabditis elegans, is intron-less and lacks poly A (Roberts, S.B., Emmons, S.W. and Childs, G. (1989) J. Mol. Biol. 206, 567-577).
Resumo:
BACKGROUND Bone morphogenetic protein 9 (BMP9) has previously been characterized as one of the most osteogenic growth factors of the BMP-family, however, up until now, these experiments have only been demonstrated using adenovirus-transfection experiments (gene therapy). With the recent development of recombinant human (rh)BMP9, the aim of the present study was to investigate its osteopromotive potential versus rhBMP2 when loaded onto a collagen membrane. METHODS ST2 stromal bone marrow cells were seeded onto 1)control; 2)rhBMP2-low(10ng/ml); 3)rhBMP2-high(100ng/ml); 4)rhBMP9-low(10ng/ml); and 5)rhBMP9-high(100ng/ml) porcine collagen membranes. Groups were then compared for cell adhesion at 8 hours, cell proliferation at 1, 3 and 5 days real-time PCR at 3 and 14 days for genes encoding Runx2, alkaline phosphatase(ALP) and bone sialoprotein(BSP) at 3 and 14 days and alizarin red staining at 14 days. RESULTS While rhBMP2 and rhBMP9 demonstrated little effects on cell attachment and proliferation, pronounced increases were observed on osteoblast differentiation. It was found that all groups significantly induced ALP mRNA levels at 3 days and BSP levels at 14 days, however rhBMP9-high demonstrated significantly higher values when compared to all other groups for ALP levels (5-fold increase at 3 days and 2-fold increase at 14 days). Alizarin red staining further revealed that both concentrations of rhBMP9 induced up to 3-fold more staining when compared to rhBMP2. CONCLUSION These results indicate that the combination of collagen membranes with rhBMP9 significantly induced significantly higher ALP mRNA expression and alizarin red staining when compared to rhBMP2. These findings suggest that rhBMP9 may be a suitable growth factor for future regenerative procedures in bone biology.
Resumo:
The U7 snRNA, together with both common and unique snRNP proteins, forms the U7 snRNP particle. This particle is a major component of the 3' processing machinery that converts histone pre-mRNA into mature mRNA in the eukaryotic nucleus. The genes for many snRNAs are present in multiple copies and often have many pseudogenes. Southern blot experiments using U7 oligonucleotide and gene probes have identified only one strongly hybridizing band and three weakly hybridizing bands in mouse genomic DNA. Previously, two laboratories isolated genomic clones encoding one functional U7 gene and three presumed pseudogenes. Since all the genes were isolated on separate, nonoverlapping genomic fragments, the four genes are not tightly clustered in the mouse genome. In this study, we use fluorescence in situ hybridization to determine the chromosomal locations of these clones and their possible linkage to histone loci. Two of the pseudogenes map to mouse Chromosome 1, but are many megabases apart, whereas the active U7 gene maps to Chromosome 6. Possible mechanisms for this localization pattern are discussed.
Resumo:
We have analysed the extent of base-pairing interactions between spacer sequences of histone pre-mRNA and U7 snRNA present in the trans-acting U7 snRNP and their importance for histone RNA 3' end processing in vitro. For the efficiently processed mouse H4-12 gene, a computer analysis revealed that additional base pairs could be formed with U7 RNA outside of the previously recognised spacer element (stem II). One complementarity (stem III) is located more 3' and involves nucleotides from the very 5' end of U7 RNA. The other, more 5' located complementarity (stem I) involves nucleotides of the Sm binding site of U7 RNA, a part known to interact with snRNP structural proteins. These potential stem structures are separated from each other by short internal loops of unpaired nucleotides. Mutational analyses of the pre-mRNA indicate that stems II and III are equally important for interaction with the U7 snRNP and for processing, whereas mutations in stem I have moderate effects on processing efficiency, but do not impair complex formation with the U7 snRNP. Thus nucleotides near the processing site may be important for processing, but do not contribute to the assembly of an active complex by forming a stem I structure. The importance of stem III was confirmed by the ability of a complementary mutation in U7 RNA to suppress a stem III mutation in a complementation assay using Xenopus laevis oocytes. The main role of the factor(s) binding to the upstream hairpin loop is to stabilise the U7-pre-mRNA complex. This was shown by either stabilising (by mutation) or destabilising (by increased temperature) the U7-pre-mRNA base-pairing under conditions where hairpin factor binding was either allowed or prevented (by mutation or competition). The hairpin dependence of processing was found to be inversely related to the strength of the U7-pre-mRNA interaction.
Resumo:
We have studied the requirements for efficient histone-specific RNA 3' processing in nuclear extract from mammalian tissue culture cells. Processing is strongly impaired by mutations in the pre-mRNA spacer element that reduce the base-pairing potential with U7 RNA. Moreover, by exchanging the hairpin and spacer elements of two differently processed H4 genes, we find that this difference is exclusively due to the spacer element. Finally, processing is inhibited by the addition of competitor RNAs, if these contain a wild-type spacer sequence, but not if their spacer element is mutated. Conversely, the importance of the hairpin for histone RNA 3' processing is highly variable: A hairpin mutant of the H4-12 gene is processed with almost wild-type efficiency in extract from K21 mouse mastocytoma cells but is strongly affected in HeLa cell extract, whereas an identical hairpin mutant of the H4-1 gene is affected in both extracts. The hairpin defect of H4-12-specific RNA in HeLa cells can be overcome by a compensatory mutation that increases the base complementarity to U7 snRNA. Very similar results were also obtained in RNA competition experiments: processing of H4-12-specific RNA can be competed by RNA carrying a wild-type hairpin element in extract from HeLa, but not K21 cells, whereas processing of H4-1-specific RNA can be competed in both extracts. With two additional histone genes we obtained results that were in one case intermediate and in the other similar to those obtained with H4-1. These results suggest that hairpin binding factor(s) can cooperatively support the ability of U7 snRNPs to form an active processing complex, but is(are) not directly involved in the processing mechanism.