968 resultados para heart left ventricle performance
Resumo:
Background:Transposition of the great arteries (TGA) is the most common cyanotic cardiopathy, with an incidence ranging between 0.2 and 0.4 per 1000 live births. Many patients not treated in the first few months of life may progress with severe pulmonary vascular disease. Treatment of these patients may include palliative surgery to redirect the flow at the atrial level.Objective:Report our institutional experience with the palliative Senning procedure in children diagnosed with TGA and double outlet right ventricle with severe pulmonary vascular disease, and to evaluate the early and late clinical progression of the palliative Senning procedure.Methods:Retrospective study based on the evaluation of medical records in the period of 1991 to 2014. Only patients without an indication for definitive surgical treatment of the cardiopathy due to elevated pulmonary pressure were included.Results:After one year of follow-up there was a mean increase in arterial oxygen saturation from 62.1% to 92.5% and a mean decrease in hematocrit from 49.4% to 36.3%. Lung histological analysis was feasible in 16 patients. In 8 patients, pulmonary biopsy grades 3 and 4 were evidenced.Conclusion:The palliative Senning procedure improved arterial oxygen saturation, reduced polycythemia, and provided a better quality of life for patients with TGA with ventricular septal defect, severe pulmonary hypertension, and poor prognosis.
Resumo:
Abstract Background: Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are inflammatory markers used as prognostic factors in various diseases. The aims of this study were to compare the PLR and the NLR of heart failure (HF) patients with those of age-sex matched controls, to evaluate the predictive value of those markers in detecting HF, and to demonstrate the effect of NLR and PLR on mortality in HF patients during follow-up. Methods: This study included 56 HF patients and 40 controls without HF. All subjects underwent transthoracic echocardiography to evaluate cardiac functions. The NLR and the PLR were calculated as the ratio of neutrophil count to lymphocyte count and as the ratio of platelet count to lymphocyte count, respectively. All HF patients were followed after their discharge from the hospital to evaluate mortality, cerebrovascular events, and re-hospitalization. Results: The NLR and the PLR of HF patients were significantly higher compared to those of the controls (p < 0.01). There was an inverse correlation between the NLR and the left ventricular ejection fraction of the study population (r: -0.409, p < 0.001). The best cut-off value of NLR to predict HF was 3.0, with 86.3% sensitivity and 77.5% specificity, and the best cut-off value of PLR to predict HF was 137.3, with 70% sensitivity and 60% specificity. Only NLR was an independent predictor of mortality in HF patients. A cut-off value of 5.1 for NLR can predict death in HF patients with 75% sensitivity and 62% specificity during a 12.8-month follow-up period on average. Conclusion: NLR and PLR were higher in HF patients than in age-sex matched controls. However, NLR and PLR were not sufficient to establish a diagnosis of HF. NLR can be used to predict mortality during the follow-up of HF patients.
Resumo:
Abstract Background: Heart failure is accompanied by abnormalities in ventricular-vascular interaction due to increased myocardial and arterial stiffness. Galectin-3 is a recently discovered biomarker that plays an important role in myocardial and vascular fibrosis and heart failure progression. Objectives: The aim of this study was to determine whether galectin-3 is correlated with arterial stiffening markers and impaired ventricular-arterial coupling in decompensated heart failure patients. Methods: A total of 79 inpatients with acute decompensated heart failure were evaluated. Serum galectin-3 was determined at baseline, and during admission, transthoracic echocardiography and measurements of vascular indices by Doppler ultrasonography were performed. Results: Elevated pulse wave velocity and low arterial carotid distensibility are associated with heart failure in patients with preserved ejection fraction (p = 0.04, p = 0.009). Pulse wave velocity, carotid distensibility and Young’s modulus did not correlate with serum galectin-3 levels. Conversely, raised galectin-3 levels correlated with an increased ventricular-arterial coupling ratio (Ea/Elv) p = 0.047, OR = 1.9, 95% CI (1.0‑3.6). Increased galectin-3 levels were associated with lower rates of left ventricular pressure rise in early systole (dp/dt) (p=0.018) and raised pulmonary artery pressure (p = 0.046). High galectin-3 levels (p = 0.038, HR = 3.07) and arterial pulmonary pressure (p = 0.007, HR = 1.06) were found to be independent risk factors for all-cause mortality and readmissions. Conclusions: This study showed no significant correlation between serum galectin-3 levels and arterial stiffening markers. Instead, high galectin-3 levels predicted impaired ventricular-arterial coupling. Galectin-3 may be predictive of raised pulmonary artery pressures. Elevated galectin-3 levels correlate with severe systolic dysfunction and together with pulmonary hypertension are independent markers of outcome.
Resumo:
Background: Heart transplant rejection originates slow and fragmented conduction. Signal-averaged ECG (SAECG) is a stratification method in the risk of rejection. Objective: To develop a risk score for rejection, using SAECG variables. Methods: We studied 28 transplant patients. First, we divided the sample into two groups based on the occurrence of acute rejection (5 with rejection and 23 without). In a second phase, we divided the sample considering the existence or not of rejection in at least one biopsy performed on the follow-up period (rejection pm1: 18 with rejection and 10 without). Results: On conventional ECG, the presence of fibrosis was the only criterion associated with acute rejection (OR = 19; 95% CI = 1.65-218.47; p = 0.02). Considering the rejection pm1, an association was found with the SAECG variables, mainly with RMS40 (OR = 0.97; 95% CI = 0.87-0.99; p = 0.03) and LAS40 (OR = 1.06; 95% IC = 1.01-1.11; p = 0.03). We formulated a risk score including those variables, and evaluated its discriminative performance in our sample. The presence of fibrosis with increasing of LAS40 and decreasing of RMS40 showed a good ability to distinguish between patients with and without rejection (AUC = 0.82; p < 0.01), assuming a cutoff point of sensitivity = 83.3% and specificity = 60%. Conclusion: The SAECG distinguished between patients with and without rejection. The usefulness of the proposed risk score must be demonstrated in larger follow-up studies.
Resumo:
Abstract Background: Pulmonary hypertension is associated with poor prognosis in heart failure. However, non-invasive diagnosis is still challenging in clinical practice. Objective: We sought to assess the prognostic utility of non-invasive estimation of pulmonary vascular resistances (PVR) by cardiovascular magnetic resonance to predict adverse cardiovascular outcomes in heart failure with reduced ejection fraction (HFrEF). Methods: Prospective registry of patients with left ventricular ejection fraction (LVEF) < 40% and recently admitted for decompensated heart failure during three years. PVRwere calculated based on right ventricular ejection fraction and average velocity of the pulmonary artery estimated during cardiac magnetic resonance. Readmission for heart failure and all-cause mortality were considered as adverse events at follow-up. Results: 105 patients (average LVEF 26.0 ±7.7%, ischemic etiology 43%) were included. Patients with adverse events at long-term follow-up had higher values of PVR (6.93 ± 1.9 vs. 4.6 ± 1.7estimated Wood Units (eWu), p < 0.001). In multivariate Cox regression analysis, PVR ≥ 5 eWu(cutoff value according to ROC curve) was independently associated with increased risk of adverse events at 9 months follow-up (HR2.98; 95% CI 1.12-7.88; p < 0.03). Conclusions: In patients with HFrEF, the presence of PVR ≥ 5.0 Wu is associated with significantly worse clinical outcome at follow-up. Non-invasive estimation of PVR by cardiac magnetic resonance might be useful for risk stratification in HFrEF, irrespective of etiology, presence of late gadolinium enhancement or LVEF.
Resumo:
Abstract Background: The revascularization strategy of the left main disease is determinant for clinical outcomes. Objective: We sought to 1) validate and compare the performance of the SYNTAX Score 1 and 2 for predicting major cardiovascular events at 4 years in patients who underwent unprotected left main angioplasty and 2) evaluate the long-term outcome according to the SYNTAX score 2-recommended revascularization strategy. Methods: We retrospectively studied 132 patients from a single-centre registry who underwent unprotected left main angioplasty between March 1999 and December 2010. Discrimination and calibration of both models were assessed by ROC curve analysis, calibration curves and the Hosmer-Lemeshow test. Results: Total event rate was 26.5% at 4 years.The AUC for the SYNTAX Score 1 and SYNTAX Score 2 for percutaneous coronary intervention, was 0.61 (95% CI: 0.49-0.73) and 0.67 (95% CI: 0.57-0.78), respectively. Despite a good overall adjustment for both models, the SYNTAX Score 2 tended to underpredict risk. In the 47 patients (36%) who should have undergone surgery according to the SYNTAX Score 2, event rate was numerically higher (30% vs. 25%; p=0.54), and for those with a higher difference between the two SYNTAX Score 2 scores (Percutaneous coronary intervention vs. Coronary artery by-pass graft risk estimation greater than 5.7%), event rate was almost double (40% vs. 22%; p=0.2). Conclusion: The SYNTAX Score 2 may allow a better and individualized risk stratification of patients who need revascularization of an unprotected left main coronary artery. Prospective studies are needed for further validation.
Resumo:
Abstract Background: Heart disease in pregnancy is the leading cause of non- obstetric maternal death. Few Brazilian studies have assessed the impact of heart disease during pregnancy. Objective: To determine the risk factors associated with cardiovascular and neonatal complications. Methods: We evaluated 132 pregnant women with heart disease at a High-Risk Pregnancy outpatient clinic, from January 2005 to July 2010. Variables that could influence the maternal-fetal outcome were selected: age, parity, smoking, etiology and severity of the disease, previous cardiac complications, cyanosis, New York Heart Association (NYHA) functional class > II, left ventricular dysfunction/obstruction, arrhythmia, drug treatment change, time of prenatal care beginning and number of prenatal visits. The maternal-fetal risk index, Cardiac Disease in Pregnancy (CARPREG), was retrospectively calculated at the beginning of prenatal care, and patients were stratified in its three risk categories. Results: Rheumatic heart disease was the most prevalent (62.12%). The most frequent complications were heart failure (11.36%) and arrhythmias (6.82%). Factors associated with cardiovascular complications on multivariate analysis were: drug treatment change (p = 0.009), previous cardiac complications (p = 0.013) and NYHA class III on the first prenatal visit (p = 0.041). The cardiovascular complication rates were 15.22% in CARPREG 0, 16.42% in CARPREG 1, and 42.11% in CARPREG > 1, differing from those estimated by the original index: 5%, 27% and 75%, respectively. This sample had 26.36% of prematurity. Conclusion: The cardiovascular complication risk factors in this population were drug treatment change, previous cardiac complications and NYHA class III at the beginning of prenatal care. The CARPREG index used in this sample composed mainly of patients with rheumatic heart disease overestimated the number of events in pregnant women classified as CARPREG 1 and > 1, and underestimated it in low-risk patients (CARPREG 0).
Resumo:
Purpose: In extreme situations, such as hyperacute rejection of heart transplant or major bleeding per-operating complications, an urgent heart explantation might be the only means of survival. The aim of this experimental study was to improve the surgical technique and the hemodynamics of an Extracorporeal Membrane Oxygenation (ECMO) support through a peripheral vascular access in an acardia model. Methods: An ECMO support was established in 7 bovine experiments (59±6.1 kg) by the transjugular insertion to the caval axis of a self-expanded cannula, with return through a carotid artery. After baseline measurements of pump flow and arterial and central venous pressure, ventricular fibrillation was induced (B), the great arteries were clamped, the heart was excised and right and left atria remnants, containing the pulmonary veins, were sutured together leaving an atrial septal defect (ASD) over the cannula in the caval axis. Measurements were taken with the pulmonary artery (PA) clamped (C) and anastomosed with the caval axis (D). Regular arterial and central venous blood gases tests were performed. The ANOVA test for repeated measures was used to test the null hypothesis and a Bonferroni t method for assessing the significance in the between groups pairwise comparison of mean pump flow. Results: Initial pump flow (A) was 4.3±0.6 L/min dropping to 2.8±0.7 L/min (P B-A= 0.003) 10 minutes after induction of ventricular fibrillation (B). After cardiectomy, with the pulmonary artery clamped (C) it augmented not significantly to 3.5±0.8 L/min (P C-B= 0.33, P C-A= 0.029). Finally, PA anastomosis to the caval axis was followed by an almost to baseline pump flow augmentation (4.1±0.7 L/min, P D-B= 0.009, P D-C= 0.006, P D-A= 0.597), permitting a full ECMO support in acardia by a peripheral vascular access. Conclusions: ECMO support in acardia is feasible, providing new opportunities in situations where heart must urgently be explanted, as in hyperacute rejection of heart transplant. Adequate drainage of pulmonary circulation is pivotal in order to avoid pulmonary congestion and loss of volume from the normal right to left shunt of bronchial vessels. Furthermore, the PA anastomosis to the caval axis not only improves pump flow but it also permits an ECMO support by a peripheral vascular access and the closure of the chest.
Resumo:
Chronic focal and diffuse myiocarditis with interstitial fibrosis developed in Swiss outbred mice and in the inbred AKR and A/J strains of mice which were chronically infected with several Trypanosoma cruzi strains belonging to three biological types (Type I, II and III). High incidence of electrocardiographic changes with predominance of intraventricular conduction disturbances, 1st. and 2nd. degree AV block, arrhythmias, comparable with those found in human Chagas' disease, were also present. Morphological study of the conduction tissue of the heart revealed inflammatory and fibrotic changes. The presence of inflammation in the inter-atrial septum almost always coincided with the inflammatory involvement of the ventricular conduction system. Focal inflammation was associated with vacuolization and focal necrosis of the specific fibers. Most of the lesions were seen affecting the His bundel (76.3% of the cases), the right bundle branch (73.3%), AV node (43.9%) and left bundle branch (37.5%). Correlation between morphological changes in the conduction tissue and electrocardiographic alteration occured in 53.0 to 62.5% of the cases, according to the experimental groups.
Resumo:
Purpose: Diabetic myocardium is particularly vulnerable to develop heart failure in response to chronic stress conditions including hypertension or myocardial infarction. We have recently observed that angiotensin II (Ang II)-mediated downregulation of the fatty acid oxidation pathway favors occurrence of heart failure by myocardial accumulation of lipids (lipotoxicity). Because diabetic heart is exposed to high levels of circulating fatty acid, we determined whether insulin resistance favors development of heart failure in mice with Ang II-mediated myocardial remodeling.Methods: To study the combined effect of diabetes and Ang II-induced heart remodeling, we generated leptin-deficient/insulin resistant (Lepob/ob) mice with cardiac targeted overexpression of angiotensinogen (TGAOGN). Left ventricular (LV) failure was indicated by pulmonary congestion (lung weight/tibial length>+2SD of wild-type mice). Myocardial metabolism and function were assessed during in vitro isolated working heart perfusion.Results: Forty-eight percent of TGAOGN mice without insulin resistance exhibited pulmonary congestion at the age of 6 months associated with increased myocardial BNP expression (+375% compared with WT) and reduced LV power (developed pressure x cardiac output; -15%). The proportion of mice presenting heart failure was markedly increased to 71% in TGAOGN mice with insulin resistance (TGAOGN/Lepob/ob). TGAOGN/Lepob/ob mice with heart failure exhibited further increase of BNP compared with failing non-diabetic TGAOGN mice (+146%) and further reduction of cardiac power (-59%). Mice with insulin resistance alone (Lepob/ob) did not exhibit signs of heart failure or LV dysfunction. Myocardial fatty acid oxidation measured during in vitro perfusion was markedly increased in non-failing hearts from Lepob/ob mice (+380% compared with WT) and glucose oxidation decreased (-72%). In contrast, fatty acid and glucose oxidation did not differ from Lepob/ob mice in hearts from TGAOGN/Lepob/ob mice without heart failure. However, both fatty acid and glucose oxidation were markedly decreased (-47% and -48%, respectively, compared with WT/Lepob/+) in failing hearts from TGAOGN/Lepob/ob mice. Reduction of fatty acid oxidation was associated with marked reduction of protein expression of a number of regulatory enzymes implied in fatty acid oxidation.Conclusions: Insulin resistance favors the progression to heart failure during chronic exposure of the myocardium to Ang II. Our results are compatible with a role of Ang II-mediated downregulation of fatty acid oxidation, potentially promoting lipotoxicity.
Resumo:
The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old chick embryos were exposed to normoxia (30 min), anoxia (30 min), and hyperoxic reoxygenation (60 min). The time course of ROS production in the whole heart and in the atria, ventricle, and outflow tract was established using lucigenin-enhanced chemiluminescence. Cardiac rhythm, conduction, and arrhythmias were determined. The activity of superoxide dismutase, catalase, gutathione reductase, and glutathione peroxidase as well as the content of reduced and oxidized glutathione were measured. The relative contribution of the ROS-generating systems was assessed by inhibition of mitochondrial complexes I and III (rotenone and myxothiazol), NADPH oxidases (diphenylene iodonium and apocynine), and nitric oxide synthases (N-monomethyl-l-arginine and N-iminoethyl-l-ornithine). The effects of glycolysis inhibition (iodoacetate), glucose deprivation, glycogen depletion, and lactate accumulation were also investigated. In untreated hearts, ROS production peaked at 10.8 ± 3.3, 9 ± 0.8, and 4.8 ± 0.4 min (means ± SD; n = 4) of reoxygenation in the atria, ventricle, and outflow tract, respectively, and was associated with arrhythmias. Functional recovery was complete after 30-40 min. At reoxygenation, 1) the respiratory chain and NADPH oxidases were the main sources of ROS in the atria and outflow tract, respectively; 2) glucose deprivation decreased, whereas glycogen depletion increased, oxidative stress; 3) lactate worsened oxidant stress via NADPH oxidase activation; 4) glycolysis blockade enhanced ROS production; 5) no nitrosative stress was detectable; and 6) the glutathione redox cycle appeared to be a major antioxidant system. Thus, the glycolytic pathway plays a predominant role in reoxygenation-induced oxidative stress during early cardiogenesis. The relative contribution of mitochondria and extramitochondrial systems to ROS generation varies from one region to another and throughout reoxygenation.