880 resultados para group membership models
Resumo:
The Airy stress function, although frequently employed in classical linear elasticity, does not receive similar usage for granular media problems. For plane strain quasi-static deformations of a cohesionless Coulomb–Mohr granular solid, a single nonlinear partial differential equation is formulated for the Airy stress function by combining the equilibrium equations with the yield condition. This has certain advantages from the usual approach, in which two stress invariants and a stress angle are introduced, and a system of two partial differential equations is needed to describe the flow. In the present study, the symmetry analysis of differential equations is utilised for our single partial differential equation, and by computing an optimal system of one-dimensional Lie algebras, a complete set of group-invariant solutions is derived. By this it is meant that any group-invariant solution of the governing partial differential equation (provided it can be derived via the classical symmetries method) may be obtained as a member of this set by a suitable group transformation. For general values of the parameters (angle of internal friction and gravity g) it is found there are three distinct classes of solutions which correspond to granular flows considered previously in the literature. For the two limiting cases of high angle of internal friction and zero gravity, the governing partial differential equation admit larger families of Lie point symmetries, and from these symmetries, further solutions are derived, many of which are new. Furthermore, the majority of these solutions are exact, which is rare for granular flow, especially in the case of gravity driven flows.
Resumo:
Autonomous underwater gliders are robust and widely-used ocean sampling platforms that are characterized by their endurance, and are one of the best approaches to gather subsurface data at the appropriate spatial resolution to advance our knowledge of the ocean environment. Gliders generally do not employ sophisticated sensors for underwater localization, but instead dead-reckon between set waypoints. Thus, these vehicles are subject to large positional errors between prescribed and actual surfacing locations. Here, we investigate the implementation of a large-scale, regional ocean model into the trajectory design for autonomous gliders to improve their navigational accuracy. We compute the dead-reckoning error for our Slocum gliders, and compare this to the average positional error recorded from multiple deployments conducted over the past year. We then compare trajectory plans computed on-board the vehicle during recent deployments to our prediction-based trajectory plans for 140 surfacing occurrences.
Resumo:
Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.
Resumo:
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2.H2O was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As-OH units together with the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O-H...O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2- units in the crystal structure of burgessite was proved in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison.
Resumo:
Process models are used by information professionals to convey semantics about the business operations in a real world domain intended to be supported by an information system. The understandability of these models is vital to them being used for information systems development. In this paper, we examine two factors that we predict will influence the understanding of a business process that novice developers obtain from a corresponding process model: the content presentation form chosen to articulate the business domain, and the user characteristics of the novice developers working with the model. Our experimental study provides evidence that novice developers obtain similar levels of understanding when confronted with an unfamiliar or a familiar process model. However, previous modeling experience, the use of English as a second language, and previous work experience in BPM are important influencing factors of model understanding. Our findings suggest that education and research in process modeling should increase the focus on human factors and how they relate to content and content presentation formats for different modeling tasks. We discuss implications for practice and research.
Resumo:
Children often have difficulties in learning spatial representations. This study investigated the effect of four different instructional formats on learning outcomes and strategies used when dealing with spatial tasks such as assembly procedures. It was hypothesised that instructional material that imposed least extraneous cognitive load would facilitate enhanced learning. Forty secondary students were presented with four types of instruction; orthographic drawing, isometric drawing, physical model and, isometric and physical model together. The findings provide evidence to suggest that working from physical models caused least extraneous cognitive load compared to the isometric and orthographic groups. The model group took less time, had more correctly completed models, required fewer extra looks, spent less time studying the instruction and made fewer errors. Problem decomposition, forward working and attending to information in the foreground of the graphical representation strategies were analysed.
Resumo:
In automatic facial expression detection, very accurate registration is desired which can be achieved via a deformable model approach where a dense mesh of 60-70 points on the face is used, such as an active appearance model (AAM). However, for applications where manually labeling frames is prohibitive, AAMs do not work well as they do not generalize well to unseen subjects. As such, a more coarse approach is taken for person-independent facial expression detection, where just a couple of key features (such as face and eyes) are tracked using a Viola-Jones type approach. The tracked image is normally post-processed to encode for shift and illumination invariance using a linear bank of filters. Recently, it was shown that this preprocessing step is of no benefit when close to ideal registration has been obtained. In this paper, we present a system based on the Constrained Local Model (CLM) which is a generic or person-independent face alignment algorithm which gains high accuracy. We show these results against the LBP feature extraction on the CK+ and GEMEP datasets.
Resumo:
The term Design is used to describe a wide range of activities. Like the term innovation, it is often used to describe both an activity and an outcome. Many products and services are often described as being designed, as they describe a conscious process of linking form and function. Alternatively, the many and varied processes of design are often used to describe a cost centre of an organisation to demonstrate a particular competency. However design is often not used to describe the ‘value’ it provides to an organisation and more importantly the ‘value’ it provides to both existing and future customers. Design Led Innovation bridges this gap. Design Led Innovation is a process of creating a sustainable competitive advantage, by radically changing the customer value proposition. A conceptual model has been developed to assist organisations apply and embed design in a company’s vision, strategy, culture, leadership and development processes.
Resumo:
Background The relationship between positive parent-child interactions and optimal child development is well established. Families with a child with a disability may face additional challenges to establishing positive parent-child relationships. There are limited studies addressing the effectiveness of interventions which seek to address these issues with parents and young children with a disability. In particular, prior studies of music therapy with this group have been limited by small sample sizes and the use of measures of limited reliability and validity. Objective This study investigates the effectiveness of a short-term group music therapy intervention for parents who have a child with a disability and explores the factors associated with higher outcomes for participating families. Methods The participants were 201 mother-child dyads, where the child had a disability. Pre and post intervention parental questionnaires and clinician observation measures were taken on a range of parental wellbeing, parenting behaviours and child developmental factors. Descriptive data, t-tests for repeated measures and a predictive model tested via logistic regression are presented. Results Significant improvements pre to post were found for parent mental health, child communication and social skills, parenting sensitivity, parental engagement with child and acceptance of child, child responsiveness to parent, and child interest and participation in program activities. There was also evidence that parents were very satisfied with the program and that it brought social benefits to families. Reliable change on six or more indicators of parent or child functioning was predicted by attendance and parent education. Conclusions This study provides positive evidence for the effectiveness of group music therapy in promoting improved parental mental health, positive parenting and key child developmental areas. Whilst several limitations are discussed, the study does address some of the gaps in the music therapy evidence base in this area.
Resumo:
In many product categories of durable goods such as TV, PC, and DVD player, the largest component of sales is generated by consumers replacing existing units. Aggregate sales models proposed by diffusion of innovation researchers for the replacement component of sales have incorporated several different replacement distributions such as Rayleigh, Weibull, Truncated Normal and Gamma. Although these alternative replacement distributions have been tested using both time series sales data and individual-level actuarial “life-tables” of replacement ages, there is no census on which distributions are more appropriate to model replacement behaviour. In the current study we are motivated to develop a new “modified gamma” distribution by two reasons. First we recognise that replacements have two fundamentally different drivers – those forced by failure and early, discretionary replacements. The replacement distribution for each of these drivers is expected to be quite different. Second, we observed a poor fit of other distributions to out empirical data. We conducted a survey of 8,077 households to empirically examine models of replacement sales for six electronic consumer durables – TVs, VCRs, DVD players, digital cameras, personal and notebook computers. This data allows us to construct individual-level “life-tables” for replacement ages. We demonstrate the new modified gamma model fits the empirical data better than existing models for all six products using both a primary and a hold-out sample.
Resumo:
Methicillin-resistant Staphylococcus Aureus (MRSA) is a pathogen that continues to be of major concern in hospitals. We develop models and computational schemes based on observed weekly incidence data to estimate MRSA transmission parameters. We extend the deterministic model of McBryde, Pettitt, and McElwain (2007, Journal of Theoretical Biology 245, 470–481) involving an underlying population of MRSA colonized patients and health-care workers that describes, among other processes, transmission between uncolonized patients and colonized health-care workers and vice versa. We develop new bivariate and trivariate Markov models to include incidence so that estimated transmission rates can be based directly on new colonizations rather than indirectly on prevalence. Imperfect sensitivity of pathogen detection is modeled using a hidden Markov process. The advantages of our approach include (i) a discrete valued assumption for the number of colonized health-care workers, (ii) two transmission parameters can be incorporated into the likelihood, (iii) the likelihood depends on the number of new cases to improve precision of inference, (iv) individual patient records are not required, and (v) the possibility of imperfect detection of colonization is incorporated. We compare our approach with that used by McBryde et al. (2007) based on an approximation that eliminates the health-care workers from the model, uses Markov chain Monte Carlo and individual patient data. We apply these models to MRSA colonization data collected in a small intensive care unit at the Princess Alexandra Hospital, Brisbane, Australia.
Resumo:
Three recent papers published in Chemical Engineering Journal studied the solution of a model of diffusion and nonlinear reaction using three different methods. Two of these studies obtained series solutions using specialized mathematical methods, known as the Adomian decomposition method and the homotopy analysis method. Subsequently it was shown that the solution of the same particular model could be written in terms of a transcendental function called Gauss’ hypergeometric function. These three previous approaches focused on one particular reactive transport model. This particular model ignored advective transport and considered one specific reaction term only. Here we generalize these previous approaches and develop an exact analytical solution for a general class of steady state reactive transport models that incorporate (i) combined advective and diffusive transport, and (ii) any sufficiently differentiable reaction term R(C). The new solution is a convergent Maclaurin series. The Maclaurin series solution can be derived without any specialized mathematical methods nor does it necessarily involve the computation of any transcendental function. Applying the Maclaurin series solution to certain case studies shows that the previously published solutions are particular cases of the more general solution outlined here. We also demonstrate the accuracy of the Maclaurin series solution by comparing with numerical solutions for particular cases.
Resumo:
As organizations reach to higher levels of business process management maturity, they often find themselves maintaining repositories of hundreds or even thousands of process models, representing valuable knowledge about their operations. Over time, process model repositories tend to accumulate duplicate fragments (also called clones) as new process models are created or extended by copying and merging fragments from other models. This calls for methods to detect clones in process models, so that these clones can be refactored as separate subprocesses in order to improve maintainability. This paper presents an indexing structure to support the fast detection of clones in large process model repositories. The proposed index is based on a novel combination of a method for process model decomposition (specifically the Refined Process Structure Tree), with established graph canonization and string matching techniques. Experiments show that the algorithm scales to repositories with hundreds of models. The experimental results also show that a significant number of non-trivial clones can be found in process model repositories taken from industrial practice.
Resumo:
Process models in organizational collections are typically modeled by the same team and using the same conventions. As such, these models share many characteristic features like size range, type and frequency of errors. In most cases merely small samples of these collections are available due to e.g. the sensitive information they contain. Because of their sizes, these samples may not provide an accurate representation of the characteristics of the originating collection. This paper deals with the problem of constructing collections of process models, in the form of Petri nets, from small samples of a collection for accurate estimations of the characteristics of this collection. Given a small sample of process models drawn from a real-life collection, we mine a set of generation parameters that we use to generate arbitrary-large collections that feature the same characteristics of the original collection. In this way we can estimate the characteristics of the original collection on the generated collections.We extensively evaluate the quality of our technique on various sample datasets drawn from both research and industry.
Resumo:
As order dependencies between process tasks can get complex, it is easy to make mistakes in process model design, especially behavioral ones such as deadlocks. Notions such as soundness formalize behavioral errors and tools exist that can identify such errors. However these tools do not provide assistance with the correction of the process models. Error correction can be very challenging as the intentions of the process modeler are not known and there may be many ways in which an error can be corrected. We present a novel technique for automatic error correction in process models based on simulated annealing. Via this technique a number of process model alternatives are identified that resolve one or more errors in the original model. The technique is implemented and validated on a sample of industrial process models. The tests show that at least one sound solution can be found for each input model and that the response times are short.