969 resultados para gravitational 2-body problem
Resumo:
We study the problem of type inference for a family of polymorphic type disciplines containing the power of Core-ML. This family comprises all levels of the stratification of the second-order lambda-calculus by "rank" of types. We show that typability is an undecidable problem at every rank k ≥ 3 of this stratification. While it was already known that typability is decidable at rank ≤ 2, no direct and easy-to-implement algorithm was available. To design such an algorithm, we develop a new notion of reduction and show how to use it to reduce the problem of typability at rank 2 to the problem of acyclic semi-unification. A by-product of our analysis is the publication of a simple solution procedure for acyclic semi-unification.
Resumo:
An approach for estimating 3D body pose from multiple, uncalibrated views is proposed. First, a mapping from image features to 2D body joint locations is computed using a statistical framework that yields a set of several body pose hypotheses. The concept of a "virtual camera" is introduced that makes this mapping invariant to translation, image-plane rotation, and scaling of the input. As a consequence, the calibration matrices (intrinsics) of the virtual cameras can be considered completely known, and their poses are known up to a single angular displacement parameter. Given pose hypotheses obtained in the multiple virtual camera views, the recovery of 3D body pose and camera relative orientations is formulated as a stochastic optimization problem. An Expectation-Maximization algorithm is derived that can obtain the locally most likely (self-consistent) combination of body pose hypotheses. Performance of the approach is evaluated with synthetic sequences as well as real video sequences of human motion.
Resumo:
A fundamental task of vision systems is to infer the state of the world given some form of visual observations. From a computational perspective, this often involves facing an ill-posed problem; e.g., information is lost via projection of the 3D world into a 2D image. Solution of an ill-posed problem requires additional information, usually provided as a model of the underlying process. It is important that the model be both computationally feasible as well as theoretically well-founded. In this thesis, a probabilistic, nonlinear supervised computational learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human body or human hands, given images obtained via one or more uncalibrated cameras. The SMA consists of several specialized forward mapping functions that are estimated automatically from training data, and a possibly known feedback function. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). A probabilistic model for the architecture is first formalized. Solutions to key algorithmic problems are then derived: simultaneous learning of the specialized domains along with the mapping functions, as well as performing inference given inputs and a feedback function. The SMA employs a variant of the Expectation-Maximization algorithm and approximate inference. The approach allows the use of alternative conditional independence assumptions for learning and inference, which are derived from a forward model and a feedback model. Experimental validation of the proposed approach is conducted in the task of estimating articulated body pose from image silhouettes. Accuracy and stability of the SMA framework is tested using artificial data sets, as well as synthetic and real video sequences of human bodies and hands.
Resumo:
A non-linear supervised learning architecture, the Specialized Mapping Architecture (SMA) and its application to articulated body pose reconstruction from single monocular images is described. The architecture is formed by a number of specialized mapping functions, each of them with the purpose of mapping certain portions (connected or not) of the input space, and a feedback matching process. A probabilistic model for the architecture is described along with a mechanism for learning its parameters. The learning problem is approached using a maximum likelihood estimation framework; we present Expectation Maximization (EM) algorithms for two different instances of the likelihood probability. Performance is characterized by estimating human body postures from low level visual features, showing promising results.
Resumo:
The combinatorial Dirichlet problem is formulated, and an algorithm for solving it is presented. This provides an effective method for interpolating missing data on weighted graphs of arbitrary connectivity. Image processing examples are shown, and the relation to anistropic diffusion is discussed.
Resumo:
Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.
Resumo:
This paper describes a self-organizing neural network that rapidly learns a body-centered representation of 3-D target positions. This representation remains invariant under head and eye movements, and is a key component of sensory-motor systems for producing motor equivalent reaches to targets (Bullock, Grossberg, and Guenther, 1993).
Resumo:
A neural model is described of how the brain may autonomously learn a body-centered representation of 3-D target position by combining information about retinal target position, eye position, and head position in real time. Such a body-centered spatial representation enables accurate movement commands to the limbs to be generated despite changes in the spatial relationships between the eyes, head, body, and limbs through time. The model learns a vector representation--otherwise known as a parcellated distributed representation--of target vergence with respect to the two eyes, and of the horizontal and vertical spherical angles of the target with respect to a cyclopean egocenter. Such a vergence-spherical representation has been reported in the caudal midbrain and medulla of the frog, as well as in psychophysical movement studies in humans. A head-centered vergence-spherical representation of foveated target position can be generated by two stages of opponent processing that combine corollary discharges of outflow movement signals to the two eyes. Sums and differences of opponent signals define angular and vergence coordinates, respectively. The head-centered representation interacts with a binocular visual representation of non-foveated target position to learn a visuomotor representation of both foveated and non-foveated target position that is capable of commanding yoked eye movementes. This head-centered vector representation also interacts with representations of neck movement commands to learn a body-centered estimate of target position that is capable of commanding coordinated arm movements. Learning occurs during head movements made while gaze remains fixed on a foveated target. An initial estimate is stored and a VOR-mediated gating signal prevents the stored estimate from being reset during a gaze-maintaining head movement. As the head moves, new estimates arc compared with the stored estimate to compute difference vectors which act as error signals that drive the learning process, as well as control the on-line merging of multimodal information.
Resumo:
An incremental, nonparametric probability estimation procedure using the fuzzy ARTMAP neural network is introduced. In slow-learning mode, fuzzy ARTMAP searches for patterns of data on which to build ever more accurate estimates. In max-nodes mode, the network initially learns a fixed number of categories, and weights are then adjusted gradually.
Resumo:
This article describes how corollary discharges from outflow eye movement commands can be transformed by two stages of opponent neural processing into a head-centered representation of 3-D target position. This representation implicitly defines a cyclopean coordinate system whose variables approximate the binocular vergence and spherical horizontal and vertical angles with respect to the observer's head. Various psychophysical data concerning binocular distance perception and reaching behavior are clarified by this representation. The representation provides a foundation for learning head-centered and body-centered invariant representations of both foveated and non-foveated 3-D target positions. It also enables a solution to be developed of the classical motor equivalence problem, whereby many different joint configurations of a redundant manipulator can all be used to realize a desired trajectory in 3-D space.
Resumo:
A neural network model of 3-D visual perception and figure-ground separation by visual cortex is introduced. The theory provides a unified explanation of how a 2-D image may generate a 3-D percept; how figures pop-out from cluttered backgrounds; how spatially sparse disparity cues can generate continuous surface representations at different perceived depths; how representations of occluded regions can be completed and recognized without usually being seen; how occluded regions can sometimes be seen during percepts of transparency; how high spatial frequency parts of an image may appear closer than low spatial frequency parts; how sharp targets are detected better against a figure and blurred targets are detector better against a background; how low spatial frequency parts of an image may be fused while high spatial frequency parts are rivalrous; how sparse blue cones can generate vivid blue surface percepts; how 3-D neon color spreading, visual phantoms, and tissue contrast percepts are generated; how conjunctions of color-and-depth may rapidly pop-out during visual search. These explanations arise derived from an ecological analysis of how monocularly viewed parts of an image inherit the appropriate depth from contiguous binocularly viewed parts, as during DaVinci stereopsis. The model predicts the functional role and ordering of multiple interactions within and between the two parvocellular processing streams that join LGN to prestriate area V4. Interactions from cells representing larger scales and disparities to cells representing smaller scales and disparities are of particular importance.
Resumo:
This paper describes a self-organizing neural model for eye-hand coordination. Called the DIRECT model, it embodies a solution of the classical motor equivalence problem. Motor equivalence computations allow humans and other animals to flexibly employ an arm with more degrees of freedom than the space in which it moves to carry out spatially defined tasks under conditions that may require novel joint configurations. During a motor babbling phase, the model endogenously generates movement commands that activate the correlated visual, spatial, and motor information that are used to learn its internal coordinate transformations. After learning occurs, the model is capable of controlling reaching movements of the arm to prescribed spatial targets using many different combinations of joints. When allowed visual feedback, the model can automatically perform, without additional learning, reaches with tools of variable lengths, with clamped joints, with distortions of visual input by a prism, and with unexpected perturbations. These compensatory computations occur within a single accurate reaching movement. No corrective movements are needed. Blind reaches using internal feedback have also been simulated. The model achieves its competence by transforming visual information about target position and end effector position in 3-D space into a body-centered spatial representation of the direction in 3-D space that the end effector must move to contact the target. The spatial direction vector is adaptively transformed into a motor direction vector, which represents the joint rotations that move the end effector in the desired spatial direction from the present arm configuration. Properties of the model are compared with psychophysical data on human reaching movements, neurophysiological data on the tuning curves of neurons in the monkey motor cortex, and alternative models of movement control.
Resumo:
Body Sensor Network (BSN) technology is seeing a rapid emergence in application areas such as health, fitness and sports monitoring. Current BSN wireless sensors typically operate on a single frequency band (e.g. utilizing the IEEE 802.15.4 standard that operates at 2.45GHz) employing a single radio transceiver for wireless communications. This allows a simple wireless architecture to be realized with low cost and power consumption. However, network congestion/failure can create potential issues in terms of reliability of data transfer, quality-of-service (QOS) and data throughput for the sensor. These issues can be especially critical in healthcare monitoring applications where data availability and integrity is crucial. The addition of more than one radio has the potential to address some of the above issues. For example, multi-radio implementations can allow access to more than one network, providing increased coverage and data processing as well as improved interoperability between networks. A small number of multi-radio wireless sensor solutions exist at present but require the use of more than one radio transceiver devices to achieve multi-band operation. This paper presents the design of a novel prototype multi-radio hardware platform that uses a single radio transceiver. The proposed design allows multi-band operation in the 433/868MHz ISM bands and this, together with its low complexity and small form factor, make it suitable for a wide range of BSN applications.
Resumo:
The class of all Exponential-Polynomial-Trigonometric (EPT) functions is classical and equal to the Euler-d’Alembert class of solutions of linear differential equations with constant coefficients. The class of non-negative EPT functions defined on [0;1) was discussed in Hanzon and Holland (2010) of which EPT probability density functions are an important subclass. EPT functions can be represented as ceAxb, where A is a square matrix, b a column vector and c a row vector where the triple (A; b; c) is the minimal realization of the EPT function. The minimal triple is only unique up to a basis transformation. Here the class of 2-EPT probability density functions on R is defined and shown to be closed under a variety of operations. The class is also generalised to include mixtures with the pointmass at zero. This class coincides with the class of probability density functions with rational characteristic functions. It is illustrated that the Variance Gamma density is a 2-EPT density under a parameter restriction. A discrete 2-EPT process is a process which has stochastically independent 2-EPT random variables as increments. It is shown that the distribution of the minimum and maximum of such a process is an EPT density mixed with a pointmass at zero. The Laplace Transform of these distributions correspond to the discrete time Wiener-Hopf factors of the discrete time 2-EPT process. A distribution of daily log-returns, observed over the period 1931-2011 from a prominent US index, is approximated with a 2-EPT density function. Without the non-negativity condition, it is illustrated how this problem is transformed into a discrete time rational approximation problem. The rational approximation software RARL2 is used to carry out this approximation. The non-negativity constraint is then imposed via a convex optimisation procedure after the unconstrained approximation. Sufficient and necessary conditions are derived to characterise infinitely divisible EPT and 2-EPT functions. Infinitely divisible 2-EPT density functions generate 2-EPT Lévy processes. An assets log returns can be modelled as a 2-EPT Lévy process. Closed form pricing formulae are then derived for European Options with specific times to maturity. Formulae for discretely monitored Lookback Options and 2-Period Bermudan Options are also provided. Certain Greeks, including Delta and Gamma, of these options are also computed analytically. MATLAB scripts are provided for calculations involving 2-EPT functions. Numerical option pricing examples illustrate the effectiveness of the 2-EPT approach to financial modelling.
Resumo:
The goal of neonatal nutrition in the preterm infant is to achieve postnatal growth and body composition approximating that of a normal fetus of the same postmenstrual age and to obtain a functional outcome comparable to infants born at term. However, in clinical practice such a pattern is seldom achieved, with growth failure and altered body composition being extensively reported. The BabyGrow preterm nutrition study was a longitudinal, prospective, observational study designed to investigate nutrition and growth in 59 preterm infants following the implementation of evidence-based nutrition guidelines in the neonatal unit at Cork University Maternity Hospital. Nutrient delivery was precisely measured during the entire hospital stay and intakes were compared with current international recommendations. Barriers to nutrient delivery were identified across the phases of nutritional support i.e. exclusive parenteral nutrition and transition (establishment of enteral feeds) phases of nutrition and nutritional strategies to optimise nutrient delivery were proposed according to these phases. Growth was measured from birth up to 2 months corrected age and body composition was assessed in terms of fat mass and lean body mass by air displacement plethysmography (PEA POD) at 34 weeks gestation, term corrected age and 2 months corrected age. Anthropometric and body composition data in the preterm cohort were compared with a term reference group from the Cork BASELINE Birth Cohort Study (n=1070) at similar time intervals. The clinical and nutritional determinants of growth and body composition during the neonatal period were reported for the first time. These data have international relevance, informing authoritative agencies developing evidence-based practice guidelines for neonatal nutritional support. In the future, the nutritional management of preterm infants may need to be individualised to consider gestational age, birth weight as well as preterm morbidity.