955 resultados para gold standard
Resumo:
BACKGROUND The distribution of the enzymopathy glucose-6-phosphate dehydrogenase (G6PD) deficiency is linked to areas of high malaria endemicity due to its association with protection from disease. G6PD deficiency is also identified as the cause of severe haemolysis following administration of the anti-malarial drug primaquine and further use of this drug will likely require identification of G6PD deficiency on a population level. Current conventional methods for G6PD screening have various disadvantages for field use. METHODS The WST8/1-methoxy PMS method, recently adapted for field use, was validated using a gold standard enzymatic assay (R&D Diagnostics Ltd ®) in a study involving 235 children under five years of age, who were recruited by random selection from a cohort study in Tororo, Uganda. Blood spots were collected by finger-prick onto filter paper at routine visits, and G6PD activity was determined by both tests. Performance of the WST8/1-methoxy PMS test under various temperature, light, and storage conditions was evaluated. RESULTS The WST8/1-methoxy PMS assay was found to have 72% sensitivity and 98% specificity when compared to the commercial enzymatic assay and the AUC was 0.904, suggesting good agreement. Misclassifications were at borderline values of G6PD activity between mild and normal levels, or related to outlier haemoglobin values (<8.0 gHb/dl or >14 gHb/dl) associated with ongoing anaemia or recent haemolytic crises. Although severe G6PD deficiency was not found in the area, the test enabled identification of low G6PD activity. The assay was found to be highly robust for field use; showing less light sensitivity, good performance over a wide temperature range, and good capacity for medium-to-long term storage. CONCLUSIONS The WST8/1-methoxy PMS assay was comparable to the currently used standard enzymatic test, and offers advantages in terms of cost, storage, portability and use in resource-limited settings. Such features make this test a potential key tool for deployment in the field for point of care assessment prior to primaquine administration in malaria-endemic areas. As with other G6PD tests, outlier haemoglobin levels may confound G6PD level estimation.
Resumo:
Behavior is one of the most important indicators for assessing cattle health and well-being. The objective of this study was to develop and validate a novel algorithm to monitor locomotor behavior of loose-housed dairy cows based on the output of the RumiWatch pedometer (ITIN+HOCH GmbH, Fütterungstechnik, Liestal, Switzerland). Data of locomotion were acquired by simultaneous pedometer measurements at a sampling rate of 10 Hz and video recordings for manual observation later. The study consisted of 3 independent experiments. Experiment 1 was carried out to develop and validate the algorithm for lying behavior, experiment 2 for walking and standing behavior, and experiment 3 for stride duration and stride length. The final version was validated, using the raw data, collected from cows not included in the development of the algorithm. Spearman correlation coefficients were calculated between accelerometer variables and respective data derived from the video recordings (gold standard). Dichotomous data were expressed as the proportion of correctly detected events, and the overall difference for continuous data was expressed as the relative measurement error. The proportions for correctly detected events or bouts were 1 for stand ups, lie downs, standing bouts, and lying bouts and 0.99 for walking bouts. The relative measurement error and Spearman correlation coefficient for lying time were 0.09% and 1; for standing time, 4.7% and 0.96; for walking time, 17.12% and 0.96; for number of strides, 6.23% and 0.98; for stride duration, 6.65% and 0.75; and for stride length, 11.92% and 0.81, respectively. The strong to very high correlations of the variables between visual observation and converted pedometer data indicate that the novel RumiWatch algorithm may markedly improve automated livestock management systems for efficient health monitoring of dairy cows.
Resumo:
Discectomy and spinal fusion is the gold standard for spinal surgery to relieve pain. However, fusion can be hindered for yet unknown reasons that lead to non-fusions with pseudo-arthrosis. Clinical observations indicate that presence of residual intervertebral disc (IVD) tissue might hinder the ossification. We hypothesize that BMP-antagonists are constantly secreted by IVD cells and potentially prevent the ossification process. Furthermore, L51P, the engineered BMP2 variant, stimulates osseo-induction of bone marrow-derived mesenchymal stem cells (MSC) by antagonizing BMP-inhibitors. Human MSCs, primary nucleus pulposus (NPC) and annulus pulposus cells (AFC) were isolated and expanded in monolayer cultures up to passage 3. IVD cells were seeded in 1.2% alginate beads (4Mio/mL) and separated by culture inserts from MSCs. MSCs were kept in 1:control medium, 2:osteogenic medium±alginate beads, 3:osteogenic medium+NPC (±L51P) and 4:osteogenic medium+AFC (±L51P) for 21 days. Relative gene expression of bone-related genes, alkaline phosphatase assay and histological staining were performed. Osteogenesis of MSCs was hindered as shown by reduced alizarin red staining in the presence of NPC. No such inhibition was observed if co-cultured with alginate only or in the presence of AFC. The results were confirmed on the RNA and protein level. Addition of L51Pto the co- cultures, however, induced mineralization of MSCs in presence of NPC. We demonstrated that NPC secrete BMP-antagonists that prevent osteogenesis of MSCs and L51P can antagonize BMP-antagonists and induce bone formation.
Resumo:
Introduction: Discectomy and spinal fusion is the gold standard for spinal surgery to relieve pain. However, fusion can be hindered for yet unknown reasons that lead to non-fusions with pseudo-arthrose. It is hence appealing to develop biomaterials that can enhance bone formation. Clinical observations indicate that presence of residual intervertebral disc (IVD) tissue might hinder the ossification. We hypothesize that BMP-antagonists are constantly secreted by IVD cells and potentially prevent the ossification process. Furthermore, L51P, the engineered BMP2 variant, stimulates osteoinduction of bone marrow-derived mesenchymal stem cells (MSC) by antagonizing BMP-inhibitors. Methods: Human MSCs, primary nucleus pulposus (NPC) and annulus pulposus cells (AFC) were isolated and expanded in monolayer cultures up to passage 3. IVD cells were seeded in 1.2% alginate beads (4Mio/mL) and separated by culture inserts from MSCs in a co-culture set-up. MSCs were kept in 1:control medium, 2:osteogenic medium+alginate control, 3:osteogenic medium+NPC (±L51P) and 4:osteogenic medium+AFC (±L51P) for 21 days. Relative gene expression of bone-related genes, Alkaline Phosphatase (ALP) assay and histological staining were performed. Results: Osteogenesis of MSCs was hindered as shown by reduced alizarin red staining in the presence of NPC. No such inhibition was observed if co-cultured with alginate only or in the presence of AFC. The results were confirmed on the RNA and protein level. Addition of L51P to the co-cultures induced mineralization of MSCs, however a reduced ALP was observed. Conclusion: We demonstrated that NPC secrete BMP-antagonists that prevent osteogenesis of MSCs and L51P can antagonize BMP-antagonists and induce bone formation.
Resumo:
Background Protein-energy-malnutrition (PEM) is common in people with end stage kidney disease (ESKD) undergoing maintenance haemodialysis (MHD) and correlates strongly with mortality. To this day, there is no gold standard for detecting PEM in patients on MHD. Aim of Study The aim of this study was to evaluate if Nutritional Risk Screening 2002 (NRS-2002), handgrip strength measurement, mid-upper arm muscle area (MUAMA), triceps skin fold measurement (TSF), serum albumin, normalised protein catabolic rate (nPCR), Kt/V and eKt/V, dry body weight, body mass index (BMI), age and time since start on MHD are relevant for assessing PEM in patients on MHD. Methods The predictive value of the selected parameters on mortality and mortality or weight loss of more than 5% was assessed. Quantitative data analysis of the 12 parameters in the same patients on MHD in autumn 2009 (n = 64) and spring 2011 (n = 40) with paired statistical analysis and multivariate logistic regression analysis was performed. Results Paired data analysis showed significant reduction of dry body weight, BMI and nPCR. Kt/Vtot did not change, eKt/v and hand grip strength measurements were significantly higher in spring 2011. No changes were detected in TSF, serum albumin, NRS-2002 and MUAMA. Serum albumin was shown to be the only predictor of death and of the combined endpoint “death or weight loss of more than 5%”. Conclusion We now screen patients biannually for serum albumin, nPCR, Kt/V, handgrip measurement of the shunt-free arm, dry body weight, age and time since initiation of MHD.
Resumo:
Introduction: Treating low back pain (LBP) has become an increasing challenge, as it is one of the main factors causing pain and is accompanied by high costs for the individual and the society. LBP can be caused by trauma of the intervertebral disc (IVD) or IVD degeneration. In the case of disc herniation the inner gelatinous part of the IVD, called nucleus pulposus, is pressed through the fibrous, annulus fibrosus that forms the outer part of the IVD. Today’s gold standard for treatment is extensive surgery as removal of the IVD and fusion of the vertebrae. In order to find a more gentle way to treat LBP and restore the native IVD we use a novel silk fleece-membrane composite from genetically modified silk worms whose silk contains a growth factor (GDF-6) that is associated with pushing stem cells towards a disc like phenotype (1). By combining it with a genipin-enhanced fibrin hydrogel we tested its suitability in organ culture on prior injured bovine IVD in our custom built two-degree of freedom bioreactor to mimic natural loading conditions. Material & Methods: Bovine IVDs of 12-17 months old animals were isolated by first removing all surrounding tissue followed by cutting out the IVDs as previously described (2). Culturing of discs occurred in high glucose Dulbecco's Modified Eagle Medium (HG-DMEM) supplemented with 5% serum as previously described (2). On the next day injury was induced using a 2mm biopsy punch (Polymed, Switzerland). The formed cavity was filled with (0.4%) genipin-enhanced human based fibrin hydrogel (35-55mg/mL human fibrinogen, Baxter, Austria) and sealed with a silk fleece-membrane composite (Spintec Engineering, Germany). Different culture conditions were applied: free swelling, static diurnal load of 0.2MPa for 8h/d and complex loading at 0.2MPa compression combined with ± 2° torsion at 0.2Hz for 8h/d (2). After 14 days of culture cell activity was determined with resazurin assay. Additionally, glycosaminoglycan (dimethyl-methylene blue), DNA (Hoechst) and collagen content (hydroxy- proline) were determined. Finally, real-time qPCR of major IVD marker and inflammation genes was performed to judge integrity of IVDs. Results: The fibrin hydrogel is able to keep the silk seal in place throughout the 14 days of in organ culture under all conditions. Additionally, cell activity showed optimistic results and we could not confirm negative effects of the repaired discs regarding overexpression of inflammation markers. Conclusions: The genipin-enhanced fibrin hydrogel in combination with the silk fleece- membrane composite seems to be a promising approach for IVD repair. Currently we assess the capability of GDF-6 incorporated in our silk composites on human mesenchymal stem cells and later on in organ culture. References 1. Clarke LE, McConnell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 2014, Mar 12;16(2):R67. 2. Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012, Feb 2;60(60):e3490. Acknowledgements. This work is funded by the Gebert Rüf Foundation, project number GRS-028/13.
Resumo:
OBJECTIVE Arthroscopy is "the gold standard" for the diagnosis of knee cartilage lesions. However, it is invasive and expensive, and displays all the potential complications of an open surgical procedure. Ultra-high-field MRI now offers good opportunities for the indirect assessment of the integrity and structural changes of joint cartilage of the knee. The goal of the present study is to determine the site of early cartilaginous lesions in adults with non-traumatic knee pain. METHODS 3-T MRI examinations of 200 asymptomatic knees with standard and three-dimensional double-echo steady-state (3D-DESS) cartilage-specific sequences were prospectively studied for early degenerative lesions of the tibiofemoral joint. Lesions were classified and mapped using the modified Outerbridge and modified International Cartilage Repair Society classifications. RESULTS A total of 1437 lesions were detected: 56.1% grade I, 33.5% grade II, 7.2% grade III and 3.3% grade IV. Cartographically, grade I lesions were most common in the anteromedial tibial areas; grade II lesions in the anteromedial L5 femoral areas; and grade III in the centromedial M2 femoral areas. CONCLUSION 3-T MRI with standard and 3D-DESS cartilage-specific sequences demonstrated that areas predisposed to early osteoarthritis are the central, lateral and ventromedial tibial plateau, as well as the central and medial femoral condyle. ADVANCES IN KNOWLEDGE In contrast with previous studies reporting early cartilaginous lesions in the medial tibial compartment and/or in the medial femoral condyle, this study demonstrates that, regardless of grade, lesions preferentially occur at the L5 and M4 tibial and L5 and L2 femoral areas of the knee joint.
Resumo:
BACKGROUND Arthroscopy is considered as "the gold standard" for the diagnosis of traumatic intraarticular knee lesions. However, recent developments in magnetic resonance imaging (MRI) now offer good opportunities for the indirect assessment of the integrity and structural changes of the knee articular cartilage. The study was to investigate whether cartilage-specific sequences on a 3-Tesla MRI provide accurate assessment for the detection of cartilage defects. METHODS A 3-Tesla (3-T) MRI combined with three-dimensional double-echo steady-state (3D-DESS) cartilage specific sequences was performed on 210 patients with knee pain prior to knee arthroscopy. Sensitivity, specificity, and positive and negative predictive values of magnetic resonance imaging were calculated and correlated to the arthroscopic findings of cartilaginous lesions. Lesions were classified using the modified Outerbridge classification. RESULTS For the 210 patients (1260 cartilage surfaces: patella, trochlea, medial femoral condyle, medial tibia, lateral femoral condyle, lateral tibia) evaluated, the sensitivities, specificities, positive predictive values, and negative predictive values of 3-T MRI were 83.3, 99.8, 84.4, and 99.8 %, respectively, for the detection of grade IV lesions; 74.1, 99.6, 85.2, and 99.3 %, respectively, for grade III lesions; 67.9, 99.2, 76.6, and 98.2 %, respectively, for grade II lesions; and 8.8, 99.5, 80, and 92 %, respectively, for grade I lesions. CONCLUSIONS For grade III and IV lesions, 3-T MRI combined with 3D-DESS cartilage-specific sequences represents an accurate diagnostic tool. For grade II lesions, the technique demonstrates moderate sensitivity, while for grade I lesions, the sensitivity is limited to provide reliable diagnosis compared to knee arthroscopy.
Resumo:
Gebiet: Chirurgie Abstract: Introduction: Carotid endarterectomy (CEA) and coronary artery bypass grafting (CABG) could be approached in a combined or a staged fashion. Some crucial studies have shown no significant difference in peri-operative stroke and death rate in combined versus staged CEA/CABG. At present conventional extracorporeal circulation (CECC) is regarded as the gold standard for performing on-pump coronary artery bypass grafting. On contrary, the use of minimized extracorporeal circulation (MECC) for CABG diminishes hemodilution, blood-air contact, foreign surface contact and inflammatory response. At the same time, general anaesthesia (GA) is a potential risk factor for higher perioperative stroke rate after isolated CEA, not only for the ipsilateral but also for the contralateral side especially in case of contralateral high-grade stenosis or occlusion. The aim of the study was to analyze if synchronous CEA/CABG using MECC (CEA/CABG group) allows reducing the perioperative stroke risk to the level of isolated CEA performed under GA (CEA-GA group). – Methods: A retrospective analysis of all patients who underwent CEA at our institution between January 2005 and December 2012 was performed. We compared outcomes between all patients undergoing CEA/CABG to all isolated CEA-GA during the same time period. The CEA/CABG group was additionally compared to a reference group consisting of patients undergoing isolated CEA in local anaesthesia. Primary outcome was in-hospital stroke. – Results: A total of 367 CEAs were performed, from which 46 patients were excluded having either off-pump CABG or other cardiac surgery procedures than CABG combined with CEA. Out of 321 patients, 74 were in the CEA/CABG and 64 in the CEA-GA group. There was a significantly higher rate of symptomatic stenoses among patients in the CEA-GA group (p<0.002). Three (4.1%) strokes in the CEA/CABG group were registered, two ipsilateral (2.7%) and one contralateral (1.4%) to the operated side. In the CEA-GA group 2 ipsilateral strokes (3.1%) occurred. No difference was noticed between the groups (p=1.000). One patient with stroke in each group had a symptomatic stenosis preoperatively. – Conclusions: Outcome with regard to mortality and neurologic injury is very good in both -patients undergoing CEA alone as well as patients undergoing synchronous CEA and CABG using the MECC system. Although the CEA/CABG group showed slightly increased risk of stroke, it can be considered as combined treatment in particular clinical situations.
Resumo:
OBJECTIVE Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. SIGNIFICANCE This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.
Resumo:
Clinicians believe that psychosocial factors play a causal role in the etiology of many forms of functional dysphonia (FD). But for decades, all attempts to confirm such causation have failed. This paper aims to show the logic of this failure, to discuss the possibilities of employing psychology in therapy nonetheless, and to encourage clinicians to use their psychosocial knowledge and skills. The failure to confirm psychic and social factors as causal in the etiology of FD is basically a consequence of a principal shortcoming of evidence-based medicine (EBM). As the gold standard for validity, reliability, and objectivity in medical research, EBM is based on calculability and hence the processing of quantitative data. But life paths and life situations are best or sometimes only expressible in qualitative, experiential, and idiographic terms. Thus EBM-guided evaluation undervalues most psychosocial studies. This report of an experienced multidisciplinary voice team proposes alternative pathways for integrating psychosocial knowledge into the diagnosis and the treatment of FD. The difference between the fields of activity of psychotherapists and speech-language pathologists is discussed, and the latter group is shown the potential benefits of using more of their psychosocial knowledge and skills.
Resumo:
Hip dysplasia is characterized by insufficient femoral head coverage (FHC). Quantification of FHC is of importance as the underlying goal of the surgery to treat hip dysplasia is to restore a normal acetabular morphology and thereby to improve FHC. Unlike a pure 2D X-ray radiograph-based measurement method or a pure 3D CT-based measurement method, previously we presented a 2.5D method to quantify FHC from a single anteriorposterior (AP) pelvic radiograph. In this study, we first quantified and compared 3D FHC between a normal control group and a patient group using a CT-based measurement method. Taking the CT-based 3D measurements of FHC as the gold standard, we further quantified the bias, precision and correlation between the 2.5D measurements and the 3D measurements on both the control group and the patient group. Based on digitally reconstructed radiographs (DRRs), we investigated the influence of the pelvic tilt on the 2.5D measurements of FHC. The intraclass correlation coefficients (ICCs) for absolute agreement was used to quantify interobserver reliability and intraobserver reproducibility of the 2.5D measurement technique. The Pearson correlation coefficient, r, was used to determine the strength of the linear association between the 2.5D and the 3D measurements. Student's t-test was used to determine whether the differences between different measurements were statistically significant. Our experimental results demonstrated that both the interobserver reliability and the intraobserver reproducibility of the 2.5D measurement technique were very good (ICCs > 0.8). Regression analysis indicated that the correlation was very strong between the 2.5D and the 3D measurements (r = 0.89, p < 0.001). Student's t-test showed that there were no statistically significant differences between the 2.5D and the 3D measurements of FHC on the patient group (p > 0.05). The results of this study provided convincing evidence demonstrating the validity of the 2.5D measurements of FHC from a single AP pelvic radiograph and proved that it could serve as a surrogate for 3D CT-based measurements. Thus it may be possible to use this method to avoid a CT scan for the purpose of estimating 3D FHC in diagnosis and post-operative treatment evaluation of patients with hip dysplasia.
Resumo:
The aim of this study was to test the influence of different degrees of additional illumination on visual caries detection using the International Caries Detection and Assessment System (ICDAS). Two calibrated examiners assessed 139 occlusal surfaces of extracted permanent molars using a standard operation lamp with or without an additional headlamp providing three default brightness intensities. Histology served as the gold standard. Pooled data showed no differences in sensitivities. Specificities were not influenced by additional light. The area under the curve for the Marthaler classification D3 threshold was significantly lower when an additional strong headlamp was used (0.59 compared to 0.69-0.72 when reduced illumination intensities were used). One of the two examiners also had a significantly lower sensitivity for the D1 threshold when an additional headlamp was used. The use of additional white light led to a reduced detection of dentine lesions.
Resumo:
OBJECTIVES The aim of this in vitro study was to examine the effect of different levels of magnification on the accuracy and reliability of visual caries detection using ICDAS criteria. METHODS Occlusal surfaces of 100 extracted molars were assessed by 14 examiners (3rd and the 4th year dental students and dentists) using no magnification aids, a 2.5× Galilean loupe, a 4.5× Keplerian loupe, or a surgical microscope with 10× magnification. The assessments were repeated on a different day. Sensitivity, specificity, AUC and reliabilities were calculated according to the gold standard of histology. RESULTS We found that with increasing magnification, the number of surfaces rated as "sound" (ICDAS code 0) decreased, while the number of surfaces with a localized enamel breakdown (ICDAS code 3) increased. While the sensitivities increased, the values of the specificities decreased to an unacceptably low level irrespective of the clinical experience of the examiners. CONCLUSIONS ICDAS seems to be optimized for natural vision up to 2.0× magnification and not for high magnifications. The use of powerful magnification in visual caries detection involves the risk of unnecessary and premature invasive treatment. CLINICAL SIGNIFICANCE This paper discusses when it does and does not make sense to use magnification devices for visual caries detection using ICDAS criteria. Strong magnifications should be refrained from for this purpose.
Resumo:
AIM This study aimed to evaluate the effect of a digital learning tool on undergraduate dental students' performance in detecting dental caries using ICDAS. METHODS An experimental digital learning tool (DLT) was created using digital photographs of sound and carious teeth. Thirty-nine students were divided into three groups (n = 13) and each assessed 12 randomly allocated patients before and after learning strategies: G1, ICDAS e-learning program; G2, ICDAS e-learning program plus DLT; G3, no learning strategy. Students (n = 32) reassessed patients 2 weeks after training. RESULTS Comparing before and after the learning strategies, any difference in the values of specificity and area under the ROC curve for all groups was found. Sensitivity was statistically significantly higher for G1 and G2. Comparing the groups, G2 showed a significant increase in sensitivity at the D2 and D3 thresholds. Spearman's correlations with the gold standard before and after the learning strategy were 0.60 and 0.61 for G1, 0.57 and 0.63 for G2, and 0.54 and 0.54 for G3, respectively. The Wilcoxon test showed a statistically significant difference between the values obtained before and after learning strategies for G1 and G2. CONCLUSIONS Use of the DLT after the ICDAS e-learning program tended to increase the sensitivity of ICDAS used by undergraduate dental students. The DLT appeared to improve dental students' ability to use ICDAS.