838 resultados para glass fiber reinforced polymer


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermoset phenolic composites reinforced with sisal fibers were prepared to optimize the cure step. In the present study, processing parameters such as pressure, temperature, and time interval were varied to control the vaporization of the water generated as a byproduct during the crosslinking reaction. These molecules can vaporize forming voids, which in turn affect the final material properties. The set of results on impact strength revealed that the application of higher pressure before the gel point of the phenolic matrix produced composites with better properties. The SEM images showed that the cure cycle corresponding to the application of higher values of molding pressure at the gel point of the phenolic resin led to the reduction of voids in the matrix. In addition, the increase in the molding pressure during the cure step increased the resin interdiffusion. Better filling of the fiber channels decreased the possibility of water molecules diffusing through the internal spaces of the fibers. These molecules then diffused mainly through the bulk of the thermoset matrix, which led to a decrease in the water diffusion coefficient (D) at all three temperatures (25, 55 and 70 degrees C) considered in the experiments. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cellulose cassava bagasse nanofibrils (CBN) were directly extracted from a by-product of the cassava starch (CS) industry, viz. the cassava bagasse (CB), The morphological structure of the ensuing nanoparticles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), presence of other components such as sugars by high performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) experiments. The resulting nanofibrils display a relatively low crystallinity and were found to be around 2-11 nm thick and 360-1700 nm long. These nanofibrils were used as reinforcing nanoparticles in a thermoplastic cassava starch matrix plasticized using either glycerol or a mixture of glycerol/sorbitol (1:1) as plasticizer. Nanocomposite films were prepared by a melting process. The reinforcing effect of the filler evaluated by dynamical mechanical tests (DMA) and tensile tests was found to depend on the nature of the plasticizer employed. Thus, for the glycerol-plasticized matrix-based composites, it was limited especially due to additional plasticization by sugars originating from starch hydrolysis during the acid extraction. This effect was evidenced by the reduction of glass vitreous temperature of starch after the incorporation of nanofibrils in TPSG and by the increase of elongation at break in tensile test. On the other hand, for glycerol/sorbitol plasticized nanocomposites the transcrystallization of amylopectin in nanofibrils surface hindered good performances of CBN as reinforcing agent for thermoplastic cassava starch. The incorporation of cassava bagasse cellulose nanofibrils in the thermoplastic starch matrices has resulted in a decrease of its hydrophilic character especially for glycerol plasticized sample. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As most current studies, reinforced plastics have been, in recent years, a viable alternative in building structural elements of medium and large, since the lightness accompanied by high performance possible. The design of hybrid polymer composites (combination of different types of reinforcements) may enable structural applications thereof, facing the most severe service conditions. Within this class of composite materials, reinforced the underlying tissues hybrid high performance are taking space when your application requires high load bearing and high rigidity. The objective of this research work is to study the challenges in designing these fabrics bring these materials as to its mechanical characterization and fracture mechanisms involved. Some parameters associated with the process and / or form of hybridization stand out as influential factors in the final performance of the material such as the presence of anisotropy, so the fabric weave, the process of making the same, normative geometry of the specimens, among others. This sense, four laminates were developed based hybrid reinforcement fabrics involving AS4 carbon fiber, kevlar and glass 49-E as the matrix epoxy vinyl ester resin (DERAKANE 411-350). All laminates were formed each with four layers of reinforcements. Depending on the hybrid fabric, all the influencing factors mentioned above have been studied for laminates. All laminates were manufactured industrially used being the lamination process manual (hand-lay-up). All mechanical characterization and study of the mechanism of fracture (fracture mechanics) was developed for laminates subjected to uniaxial tensile test, bending in three and uniaxial compression. The analysis of fracture mechanisms were held involving the macroscopic, optical microscopy and scanning electron microscopy

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are a number of damaging mechanisms that various materials can suffer in service. However, when working with polymer composite materials, this is something that requires analysis, especially when exposed to adverse environmental conditions. Thus, the objective of the present thesis is the study of the direct influence of environmental aging and the form of hybridization of the reinforcement woven on the structural stability, surfacedegradation and fracture process of polymer composites laminates. For this, the development of two polymer composite laminates was necessary, where one of them was reinforced with a bi-directional woven with hybrid strandsofkevlar-49/glass-Efibers, and the other also with a bi-directionalwoven, however with weft and warpformed of alternating strandsof Kevlar-49 fibers and glass-E fiber The reinforcementwoven are industrially manufactured. Both laminates use a polyester resin as a matrixand are made up of four layers each. All laminates were industrially prepared by the hand lay-up method of manufacturing. To do this, test specimens were manufactured of the respective laminates and submitted to environmental aging accelerated through the aging chamber. They were exposed to alternating cycles of UV radiation and moisture (heated steam) for a standard defined period. At the end of the exposure period the specimens were subjected to mechanical tests of uniaxial tensile and bending in three points and to the characterizationsof the fracture and surface deterioration. In addition, they were submitted to a structural degradation assessment by the measurement of mass variation technique (MMVT) and the measurement of thickness variation technique (MTVT), this last technique being developed in this thesis. At the end of the analysis it was observed that the form of hybridization of the reinforcement woven and the aging process directly influence with losses or gain in mechanical properties, with losses in the structural degradation and in the formation and propagation of damage mechanism of the developedcomposite laminates

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a modified chalcogenide glass was studied by X-ray powder diffraction, differential thermal analysis, infrared and Raman scattering spectroscopies. The study of this new matrix opens new perspectives to fabricate Pr3+-doped fibers to operate as an optical amplifier in the 1.3 mum telecommunications window. The Pr3+-doped 70Ga(2)S(3)-30La(2)S(3) glass was modified through the substitution of La2S3 by La2O3, which improves the thermal stability of these glasses without any modification of phonon energy. The possibility to pull a fiber from this glass system without any devitrification is easily achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Thirty blocks (5×5×4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 μm Al2O3 particles + silanization, (2) Silica coating with 110 μm SiOx particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 °C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (cross-head speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (α≤0.05). Silica coating with silanization either using 110 μm SiOx or 30 μm SiOx particles increased the bond strength of the resin cement (24.6±2.7 MPa and 26.7±2.4 MPa, respectively) to the zirconia-based ceramic significantly compared to that of airborne particle abrasion with 110-μm Al2O3 (20.5±3.8 MPa) (ANOVA, P<0.05). Conditioning the INC-ZR ceramic surfaces with silica coating and silanization using either chairside or laboratory devices provided higher bond strengths of the resin cement than with airborne particle abrasion using 110 μm Al2O3. © 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of carbon fiber surface characteristics on flexural properties of structural composites is studied in this work. Two types of intermediate modulus carbon fibers were used: T800HB and IM7. Results revealed that higher mechanical properties are linked with higher interfacial adhesion. Morphologies and chemical compositions of commercial carbon fibers (CF) were characterized by Fourier Transformed Infra Red (FTIR) and Scanning Electronic Microscopy (SEM). Comparing the results, the T800HB apparently has more roughness, since the IM7 seems to be recovered for a polymeric film. On other hand, the IM7 one shows higher interactivity with epoxy resin system Cycom 890 RTM. Composites produced with Resin Transfer Molding (RTM) were tested on a flexural trial. Interfacial adhesion difference was showed with SEM and Dynamic Mechanical Analyses (DMA), justifying the higher flexural behavior of composites made with IM7 fibers. © 2013 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to investigate how environmental degradation affects the mechanical and thermal performance of polyetherimide/carbon fiber laminates, in this work different weathering were conducted. Additionally, dynamic mechanical analysis, interlaminar shear strength tests and non-destructive inspections were performed on this composite before and after being submitted to hygrothermal, UV radiation and thermal shock weathering. According to our results, hygrothermally aged samples had their glass transition temperature and elastic and storage moduli reduced by plasticization effect. Photooxidation, due to UV radiation exposure, occurred only on the surface of the laminates. Thermal shock induced a reversible stress on the composite's interface region. The results revealed that the mechanical behavior can vary during weather exposure but since this variation is only subtle, this thermoplastic laminate can be considered for high-performance applications, such as aerospace. © The Author(s) 2013.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: This confocal microscopy study evaluated the cement/dentin and cement/post interfaces along theroot canalwallswhenfiberglasspostswerebonded to dentin using different types of cements. Material & Methods: Thirty endodontically treated premolars were divided into 3 groups according to the adhesive materials used in the bonding procedure: Prime & Bond 2.1/Self Cure + Enforce, RelyX Unicem and RelyX Luting. Rhodamine B dye was incorporated in the luting materials for the cementation of the fiber glass posts (Exacto, Angelus) to dentin. Three transversal slices (apical, middle and coronal) were examined under confocal laser scanning microscopy. Statistical analysis was performed using the Kappa, Kruskal-Wallis and Dunnet tests, in a significance level of 5%. Results: The Prime & Bond 2.1/Self Cure + Enforce presented a uniform formation of tags in the dentin but gaps in the cement/dentin interface. The RelyX Unicem and RelyX Luting presented an adhesive interface with a fewer amount of gaps, but showed shorter tag formation than the Enforce system. All cements presented the same pattern of bubbles inside the cements. The RelyX Luting presented a greater amount of cracks inside the cement in comparison with the other cements in the coronal third, while no difference was observed between RelyX Unicem and Enforce. The RelyX Luting showed the lowest quantity of cement penetration into the post. Conclusion: In general, the quality of bonding interfaces of fiber posts luted to root canals was affected by both location and type of cement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cellulose fibers obtained from the textile industry (lyocell) were investigated as a potential reinforcement for thermoset phenolic matrices, to improve their mechanical properties. Textile cotton fibers were also considered. The fibers were characterized in terms of their chemical composition and analyzed using TGA, SEM, and X-ray. The thermoset (non-reinforced) and composites (phenolic matrices reinforced with randomly dispersed fibers) were characterized using TG, DSC, SEM, DMTA, the Izod impact strength test, and water absorption capacity analysis. The composites that were reinforced with lyocell fibers exhibited impact strengths of nearly 240 Jm(-1), whereas those reinforced with cotton fibers exhibited impact strengths of up to 773 Jm(-1). In addition to the aspect ratio, the higher crystallinity of cotton fibers compared to lyocell likely plays a role in the impact strength of the composite reinforced by the fibers. The SEM images showed that the porosity of the textile fibers allowed good bulk diffusion of the phenolic resin, which, in turn, led to both good adhesion of fiber to matrix and fewer microvoids at the interface.