996 resultados para gamma ferric oxide
Resumo:
Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO) thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS) was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/-) mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.
Resumo:
Cross-talk between NK cells and dendritic cells (DCs) is critical for the potent therapeutic response to dsRNA, but the receptors involved remained controversial. We show in this paper that two dsRNAs, polyadenylic-polyuridylic acid and polyinosinic-polycytidylic acid [poly(I:C)], similarly engaged human TLR3, whereas only poly(I:C) triggered human RIG-I and MDA5. Both dsRNA enhanced NK cell activation within PBMCs but only poly(I:C) induced IFN-gamma. Although myeloid DCs (mDCs) were required for NK cell activation, induction of cytolytic potential and IFN-gamma production did not require contact with mDCs but was dependent on type I IFN and IL-12, respectively. Poly(I:C) but not polyadenylic-polyuridylic acid synergized with mDC-derived IL-12 for IFN-gamma production by acting directly on NK cells. Finally, the requirement of both TLR3 and Rig-like receptor (RLR) on mDCs and RLRs but not TLR3 on NK cells for IFN-gamma production was demonstrated using TLR3- and Cardif-deficient mice and human RIG-I-specific activator. Thus, we report the requirement of cotriggering TLR3 and RLR on mDCs and RLRs on NK cells for a pathogen product to induce potent innate cell activation.
Resumo:
Rapport de synthèse : Le monoxyde d'azote (NO) joue un rôle important dans la régulation de l'homéostasie du système cardiovasculaire et du glucose. Les souris déficientes pour le gène codant l'isoforme neuronale de la synthase de monoxyde d'azote (nNOS) sont résistantes à l'insuline, mais les mécanismes sous-jacents sont inconnus. Le manque de NO produit par la nNOS pourrait être à l'origine d'une diminution de la perfusion du muscle squelettique et ainsi d'une diminution de l'apport de substrat. Alternativement, le déficit de nNOS normalement hautement exprimé dans le tissu musculaire squelettique pourrait directement y perturber la consommation de glucose. Finalement l'absence de l'action sympatholytique du NO neuronal pourrait diminuer la sensibilité à l'insuline. Afin de tester ces hypothèses nous avons étudié, chez des souris déficientes en nNOS et des souris-contrôle, la consommation corporelle totale de glucose et le flux musculaire squelettique pendant des clamps hyperinsulinémiques euglycémiques in vivo, ainsi que la consommation de glucose dans le muscle squelettique in vitro. De plus nous avons analysé les effets d'une inhibition alpha-adrénergique sur la consommation de glucose pendant les clamps hyperinsulinémiques euglycémiques in vivo. Le taux de perfusion de glucose pendant les clamps était grossièrement 15 pourcent plus bas (P<0.001) chez les souris déficientes en nNOS que chez les souris-contrôle. Cette résistance à l'insuline chez les souris déficientes en nNOS n'était due ni à une stimulation déficiente du flux sanguin musculaire par l'insuline ni à un défaut intrinsèque de la consommation de glucose du muscle (qui étaient comparables dans les deux groupes), mais à un mécanisme alpha-adrénergique, car l'administration de phentolamine rétablissait la sensibilité à l'insuline chez les souris déficientes en nNOS. Ces résultats suggèrent qu'une hyperactivité sympathique, potentiellement due à la perte de l'inhibition neuronale centrale du flux sympathique par le NO provenant de nNOS, contribue à la résistance à l'insuline des souris déficientes en nNOS. Par ailleurs ces résultats tendent à prouver qu'un défaut de production de NO provoquerait une résistance à l'insuline par des mécanismes différents selon l'isoforme de NO synthase déficiente (par exemple chez les souris déficientes pour la forme endothéliale de NO synthase, il a été montré que la résistance à l'insuline est due à un défaut de stimulation de la perfusion musculaire par l'insuline et à un défaut du signalling de l'insuline dans la cellule musculaire squelettique). Chez l'être humain il est établi que les états de résistance à l'insuline sont associés à une synthèse défectueuse et/ou une mauvaise biodisponibilité du NO, ainsi qu'à une hyperactivité sympathique. Nous spéculons que la perte d'inhibition centrale du flux sympathique représente un mécanisme contribuant à la résistance à l'insuline et ses complications cardiovasculaires chez l'être humain.
Resumo:
The objective of this study was to produce citrus somatic asymmetric hybrids by fusing gamma-irradiated protoplasts with iodoacetamide-treated protoplasts. Protoplasts were isolated from embryogenic suspension cells of grapefruit (Citrus paradisi Macfad.) cultivars Ruby Red and Flame, sweet oranges (C. sinensis Osbeck) 'Itaboraí', 'Natal', Valencia', and 'Succari', from 'Satsuma' (C. unshiu Marcow.) and 'Changsha' mandarin (C. reticulata Blanco) and 'Murcott' tangor (C. reticulata x C. sinensis). Donor protoplasts were exposed to gamma rays and receptor protoplasts were treated with 3 mmol L-1 iodoacetamide (IOA), and then they were fused for asymmetric hybridization. Asymmetric embryos were germinated, and the resulting shoots were either grafted onto sour orange, rough lemon or 'Swingle' (C. paradisi x Poncirus trifoliata) x 'Sunki' mandarin rootstock seedlings, or rooted after dipping their bases in indol-butyric acid (IBA) solution. The products were later acclimatized to greenhouse conditions. Ploidy was analyzed by flow cytometry, and hybridity was confirmed by amplified fragment length polymorphism (AFLP) analysis of plantlet DNAsamples. The best treatment was the donor-recipient fusion combination of 80 Gy-irradiated 'Ruby Red' protoplasts with 20 min IOA-treated 'Succari' protoplasts. Tetraploid and aneuploid plants were produced. Rooting recalcitrance was solved by dipping shoots' stems in 3,000 mg L-1 IBA solution for 10 min.
Resumo:
Background/Aim: Lipoprotein lipase (LPL) is the main enzyme responsible for the distribution of circulating triacylglycerides in tissues. Its regulation via release from active sites in the vascular endothelium is poorly understood. In a previous study we reported that in response to acute immobilization (IMMO), LPL activity rapidly increases in plasma and decreases in white adipose tissue (WAT) in rats. In other stress situations IMMO triggers a generalized increase in nitric oxide (NO) production. Methods/Results: Here we demonstrate that in rats: 1) in vivo acute IMMO rapidly increases NO concentrations in plasma 2) during acute IMMO the WAT probably produces NO via the endothelial isoform of nitric oxide synthase (eNOS) from vessels, and 3) epididymal WAT perfused in situ with an NO donor rapidly releases LPL from the endothelium. Conclusion: We propose the following chain of events: stress stimulus / rapid increase of NO production in WAT (by eNOS) / release of LPL from the endothelium in WAT vessels. This chain of events could be a new mechanism that promotes the rapid decrease of WAT LPL activity in response to a physiological stimulus.
Resumo:
INTRODUCTION: Gamma knife surgery (GKS) for vestibular schwannomas (VS) has a long-term clinical and scientific track record. After a period of de-escalation of dose prescription, results show a high rate of tumor control with improvement of clinical outcome (less than 1% facial palsy, 50-70% hearing preservation). Régis et al. (J Neurosurg 2013;119 Suppl.:105-11) suggested recently that proactive GKS management in intracanalicular tumors is better than a « wait and see » strategy when hearing is still useful at the time of diagnosis. MATERIALS AND METHODS: Based on these previous findings, we prospectively analyzed 190 vestibular schwannomas (VS), treated with GKS as first intention over a period of 4 years (2010-2014). We concentrated on patient, tumor and dosimetric characteristics. Special attention was given on the dose to the cochlea and its impact in maintaining serviceable hearing. RESULTS: The mean follow-up period was 1.3years (range 0.6-3.6). Preoperative serviceable hearing was present in 63.11% patients. The mean maximal diameter was 15.1mm (range 5-29.5). The size and volume of the tumor corresponded to Koos grade I, II, III and IV in 15.9%, 34.8%, 45.4% and 3.8% of the cases, respectively. The mean target volume was 1.24cm(3) (0.017-7.8). The mean prescription isodose volume was 1.6 cc (0.032-8.5). The mean marginal dose was 12Gy (11-12). The mean maximal dose received by the cochlea in patients with GR class 1 and 2 was 4.1Gy (1.5-7.6). Our preliminary neuroradiological follow-up shows 97% tumor control, with 45% shrinkage. Patients presenting with GR class 1 and class 2 at baseline retained serviceable hearing in 85% of cases. Among the patients with a follow-up of at least one year, those with Koos I tumors had the highest probability to maintain identical level of hearing after GKS. CONCLUSION: Our preliminary data suggest that Koos I patients should be treated early with GKS, before tumor growth and/or hearing deterioration, as they have the highest probability of hearing preservation.
Resumo:
TNF is an essential player in infections with Leishmania major, contributing to the control of the inflammatory lesion and, to a lesser degree, to parasite killing. However, the relative contribution of the soluble and transmembrane forms of TNF in these processes is unknown. To investigate the role of transmembrane TNF (mTNF) in the control of L. major infections, mTNF-knock-in (mTNF(Delta/Delta)) mice, which express functional mTNF but do not release soluble TNF, were infected with L. major, and the development of the inflammatory lesion and the immune response was compared to that occurring in L. major-infected TNF(-/-) and wild-type mice. mTNF(Delta/Delta) mice controlled the infection and resolved their inflammatory lesion as well as wild-type mice, a process associated with the early clearance of neutrophils at the site of parasite infection. In contrast, L. major-infected TNF(-/-) mice developed non-healing lesions, characterized by an elevated presence of neutrophils at the site of infection and partial control of parasite number within the lesions. Altogether, the results presented here demonstrate that mTNF, in absence of soluble TNF, is sufficient to control infection due to L. major, enabling the regulation of inflammation, and the optimal killing of Leishmania parasites at the site of infection.
Resumo:
Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs), oleic-acid-stabilized USPIO NPs (OA-USPIO NPs), and free oleic acid (OA) were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo₂ cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo₂ cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells exposed to OA utilized as a stabilizer for USPIO NPs is higly amplified compared to free OA, and is not observed in the absence of this lipid in NS-USPIO NPs.
Resumo:
Elevated oxidative stress and alteration in antioxidant systems, including glutathione (GSH) decrease, are observed in schizophrenia. Genetic and functional data indicate that impaired GSH synthesis represents a susceptibility factor for the disorder. Here, we show that a genetically compromised GSH synthesis affects the morphological and functional integrity of hippocampal parvalbumin-immunoreactive (PV-IR) interneurons, known to be affected in schizophrenia. A GSH deficit causes a selective decrease of PV-IR interneurons in CA3 and dendate gyrus (DG) of the ventral but not dorsal hippocampus and a concomitant reduction of beta/gamma oscillations. Impairment of PV-IR interneurons emerges at the end of adolescence/early adulthood as oxidative stress increases or cumulates selectively in CA3 and DG of the ventral hippocampus. Such redox dysregulation alters stress and emotion-related behaviors but leaves spatial abilities intact, indicating functional disruption of the ventral but not dorsal hippocampus. Thus, a GSH deficit affects PV-IR interneuron's integrity and neuronal synchrony in a region- and time-specific manner, leading to behavioral phenotypes related to psychiatric disorders.
Resumo:
PURPOSE: The aim of this study was to investigate the effect of a single intravitreal (i.v.t.) injection of vasoactive intestinal peptide (VIP) loaded in rhodamine-conjugated liposomes (VIP-Rh-Lip) on experimental autoimmune uveoretinitis (EAU). METHODS: An i.v.t. injection of VIP-Rh-Lip, saline, VIP, or empty-(E)-Rh-Lip was performed simultaneously, either 6 or 12 days after footpad immunization with retinal S-antigen in Lewis rats. Clinical and histologic scores were determined. Immunohistochemistry and cytokine quantification by multiplex enzyme-linked immunosorbent assay were performed in ocular tissues. Systemic immune response was determined at day 20 postimmunization by measuring proliferation and cytokine secretion of cells from inguinal lymph nodes (ILNs) draining the immunization site, specific delayed-type hypersensitivity (DTH), and the serum concentration of cytokines. Ocular and systemic biodistribution of VIP-Rh-Lip was studied in normal and EAU rats by immunofluorescence. RESULTS: The i.v.t. injection of VIP-Rh-Lip performed during the afferent, but not the efferent, phase of the disease reduced clinical EAU and protected against retinal damage. No effect was observed after saline, E-Rh-Lip, or VIP injection. VIP-Rh-Lip and VIP were detected in intraocular macrophages and in lymphoid organs. In VIP-Rh-Lip-treated eyes, macrophages expressed transforming growth factor-beta2, low levels of major histocompatibility complex class II, and nitric oxide synthase-2. T-cells showed activated caspase-3 with the preservation of photoreceptors. Intraocular levels of interleukin (IL)-2, interferon-gamma (IFN-gamma), IL-17, IL-4, GRO/KC, and CCL5 were reduced with increased IL-13. At the systemic level, treatment reduced retinal soluble autoantigen lymphocyte proliferation, decreased IL-2, and increased IL-10 in ILN cells, and diminished specific DTH and serum concentration of IL-12 and IFN-gamma. CONCLUSIONS: An i.v.t. injection of VIP-Rh-Lip, performed during the afferent stage of immune response, reduced EAU pathology through the immunomodulation of intraocular macrophages and deviant stimulation of T-cells in ILN. Thus, the encapsulation of VIP within liposomes appears as an effective strategy to deliver VIP into the eye and is an efficient means of the prevention of EAU severity.
Resumo:
BACKGROUND: Antitumour necrosis factor (anti-TNF) treatments may reactivate latent tuberculosis infection (LTBI). For detecting LTBI, the tuberculin skin test (TST) has low sensitivity and specificity. Interferon-gamma release assays (IGRA) have been shown to be more sensitive and specific than TST. OBJECTIVE: To compare the TST and the T-SPOT.TB IGRA for identifying LTBI in patients with psoriasis before anti-TNF treatment. METHODS: A retrospective study was carried out over a 4-year period on patients with psoriasis requiring anti-TNF treatment. All were subjected to the TST, T-SPOT.TB and chest X-ray. Risk factors for LTBI and history of bacillus Calmette-Guérin (BCG) vaccination were recorded. The association of T-SPOT.TB and TST results with risk factors for LTBI was tested through univariate logistic regression models. Agreement between tests was quantified using kappa statistics. Treatment for LTBI was started 1 month before anti-TNF therapy when indicated. RESULTS: Fifty patients were included; 90% had prior BCG vaccination. A positive T-SPOT.TB was strongly associated with a presumptive diagnosis of LTBI (odds ratio 7.43; 95% confidence interval 1.38-39.9), which was not the case for the TST. Agreement between the T-SPOT.TB and TST was poor, kappa = 0.33 (SD 0.13). LTBI was detected and treated in 20% of the patients. In 20% of the cases, LTBI was not retained in spite of a positive TST but a negative T-SPOT.TB. All patients received an anti-TNF agent for a median of 56 weeks (range 20-188); among patients with a positive TST/negative T-SPOT.TB, no tuberculosis was detected with a median follow-up of 64 weeks (44-188). One case of disseminated tuberculosis occurred after 28 weeks of adalimumab treatment in a patient with LTBI in spite of treatment with rifampicin. CONCLUSION: This study is the first to underline the frequency of LTBI in patients with psoriasis (20%), and to support the use of IGRA instead of the TST for its detection. Nevertheless, there is still a risk of tuberculosis under anti-TNF therapy, even if LTBI is correctly diagnosed and treated.
Resumo:
Background: Despite the widespread use of interferon-gamma release assays (IGRAs), their role in diagnosing tuberculosis and targeting preventive therapy in HIV-infected patients remains unclear. We conducted a comprehensive systematic review to contribute to the evidence-based practice in HIV-infected people. Methodology/Principal Findings: We searched MEDLINE, Cochrane, and Biomedicine databases to identify articles published between January 2005 and July 2011 that assessed QuantiFERON H -TB Gold In-Tube (QFT-GIT) and T-SPOT H .TB (T-SPOT.TB) in HIV-infected adults. We assessed their accuracy for the diagnosis of tuberculosis and incident active tuberculosis, and the proportion of indeterminate results. The search identified 38 evaluable studies covering a total of 6514 HIV-infected participants. The pooled sensitivity and specificity for tuberculosis were 61% and 72% for QFT-GIT, and 65% and 70% for T-SPOT.TB. The cumulative incidence of subsequent active tuberculosis was 8.3% for QFT-GIT and 10% for T-SPOT.TB in patients tested positive (one study each), and 0% for QFT-GIT (two studies) and T-SPOT.TB (one study) respectively in those tested negative. Pooled indeterminate rates were 8.2% for QFT-GIT and 5.9% for T-SPOT.TB. Rates were higher in high burden settings (12.0% for QFT-GIT and 7.7% for T-SPOT.TB) than in low-intermediate burden settings (3.9% for QFT-GIT and 4.3% for T-SPOT.TB). They were also higher in patients with CD4 + T-cell count, 200 (11.6% for QFT-GIT and 11.4% for T-SPOT.TB) than in those with CD4 + T-cell count $ 200 (3.1% for QFT-GIT and 7.9% for T-SPOT.TB). Conclusions/Significance: IGRAs have suboptimal accuracy for confirming or ruling out active tuberculosis disease in HIV-infected adults. While their predictive value for incident active tuberculosis is modest, a negative QFT-GIT implies a very low short- to medium-term risk. Identifying the factors associated with indeterminate results will help to optimize the use of IGRAs in clinical practice, particularly in resource-limited countries with a high prevalence of HIV-coinfection.
Resumo:
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion.