887 resultados para four-pi detectors
Resumo:
Three new ruthenium complexes of the formulae cis-[Ru(PPh3)(2)(BzTscbz)(2)] (1a), [Ru-2(PPh3)(2)(BzTscbz)(4)] (1b) and [Ru(PPh3)(2)(BzTscHbz)(2)](ClO4)(2) (2) [BzTscHbz = 4-(phenyl) thiosemicarbazone of benzaldehyde] have been synthesized and characterized by various physicochemical methods including X-ray structure determinations for 1a and 1b. The relative stabilities of the four-membered versus five-membered chelate rings formed by the deprotonated ligand BzTscbz are discussed on the basis of the experimental results and some semi-empirical as well as DFT calculations. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Sixteen neutral mixed ligand thiosemicarbazone complexes of ruthenium having general formula [Ru(PPh3)(2)L-2], where LH = 1-(arylidine)4-aryl thiosemicarbazones, have been synthesized and characterized. All complexes are diamagnetic and hence ruthenium is in the +2 oxidation state (low-spin d(6), S = 0). The complexes show several intense peaks in the visible region due to allowed metal to ligand charge transfer transitions. The structures of four of the complexes have been determined by single-crystal X-ray diffraction and they show that thiosemicarbazone ligands coordinate to the ruthenium center through the hydrazinic nitrogen and sulfur forming four-membered chelate rings with ruthenium in N2S2P2 coordination environment. In dichloromethane solution, the complexes show two quasi-reversible oxidative responses corresponding to loss of electron from HOMO and HOMO - 1. The E-0 values of the above two oxidations shows good linear relationship with Hammett substituents constant (sigma) as well as with the HOMO energy of the molecules calculated by the EHMO method. A DFT calculation on one representative complex suggests that there is appreciable contribution of the sulfur p-orbitals to the HOMO and HOMO - 1. Thus, assignment of the oxidation state of the metal in such complexes must be made with caution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host.
Resumo:
Bifidobacterium bifidum NCIMB41171 carries four genes encoding different beta-galactosidases. One of them, named bbgIII, consisted of an open reading frame of 1,935 amino acid (a.a.) residues encoding a protein with a multidomain structure, commonly identified on cell wall bound enzymes, having a signal peptide, a membrane anchor, FIVAR domains, immunoglobulin Ig-like and discoidin-like domains. The other three genes, termed bbgI, bbgII and bbgIV, encoded proteins of 1,291, 689 and 1,052 a.a. residues, respectively, which were most probably intracellularly located. Two cases of protein evolution between strains of the same species were identified when the a.a. sequences of the BbgI and BbgIII were compared with homologous proteins from B. bifidum DSM20215. The homologous proteins were found to be differentiated at the C-terminal a.a. part either due to a single nucleotide insertion or to a whole DNA sequence insertion, respectively. The bbgIV gene was located in a gene organisation surrounded by divergently transcribed genes putatively for sugar transport (galactoside-symporter) and gene regulation (LacI-transcriptional regulator), a structure that was found to be highly conserved in B. longum, B. adolescentis and B. infantis, suggesting optimal organisation shared amongst those species.
Resumo:
This paper deals with two aspects tightly related to the enzymatic characteristics and expression of four beta-galactosidases (BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171. The growth patterns of this strain indicated a preference towards complex (i.e. lactose, galactooligosaccharides (GOSs)) rather than simple carbohydrates (i.e. glucose and galactose) and a collaborative action and synergistic relation of more than one beta-galactosidase isoenzyme for either lactose or GOS hydrolysis and subsequent assimilation. Native polyacrylamide gel electrophoresis analysis of protein extracts from cells growing on different carbohydrates (i.e. glucose, lactose or GOS) indicated that two lactose hydrolysing enzymes (BbgI and BbgIII) and one GOS hydrolysing enzyme (BbgII) were constitutively expressed, whereas a fourth lactose hydrolysing enzyme (BbgIV) was induced in the presence of lactose or different GOS fractions. Furthermore, the beta-galactosidase expression profiles of B. bifidum cells and the transgalactosylating properties of each individual isoenzyme, with lactose as substrate, clearly indicated that mainly three isoenzymes (BbgI, BbgIII and BbgIV) are implicated in GOS synthesis when whole B. bifidum cells are utilised. Two of the isoenzymes (BbgI and BbgIV) proved to have better transgalactosylating properties giving yields ranging from 42% to 47% whereas the rest (BbgI and BbgIII) showed lower yields (15% and 29%, respectively).
Resumo:
Four different beta-galactosidases (previously named BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171 were overexpressed in Escherichia coli, purified to homogeneity and their biochemical properties and substrate preferences comparatively analysed. BbgI was forming a hexameric protein complex of 875 kDa, whereas BbgII, BbgIII and BbgIV were dimers with native molecular masses of 178, 351 and 248 kDa, respectively. BbgII was the only enzyme that preferred acidic conditions for optimal activity (pH 5.4-5.8), whereas the other three exhibited optima in more neutral pH ranges (pH 6.4-6.8). Na+ and/or K+ ions were prerequisite for BbgI and BbgIV activity in Bis-Tris-buffered solutions, whereas Mg++ was strongly activating them in phosphate-buffered solutions. BbgII and BbgIII were slightly influenced from the presence or absence of cations, with Mg++, Mn++ and Ca++ ions exerting the most positive effect. Determination of the specificity constants (k(cat)/K-m) clearly indicated that BbgI (6.11 x 10(4) s(-1) M-1), BbgIII (2.36 x 10(4) s(-1) M-1) and especially BbgIV (4.01 x 10(5) s(-1) M-1) are highly specialised in the hydrolysis of lactose, whereas BbgII is more specific for beta-D-(1 -> 6) galactobiose (5.59 x 10(4) s(-1) M-1) than lactose (1.48 x 10(3) s(-1) M-1). Activity measurements towards other substrates (e. g. beta-D-(1 -> 6) galactobiose, beta-D-(1 -> 4) galactobiose, beta-D-(1 -> 4) galactosyllactose, N-acetyllactosamine, etc.) indicated that the beta-galactosidases were complementary to each other by hydrolysing different substrates and thus contributing in a different way to the bacterial physiology.
Resumo:
This study was carried out to examine the effect or inulin (IN), fructooligosaccharide (FOS), polydextrose (POL) and isomaltooligosaccharides (ISO), alone and in combination, on gas production, gas composition and prebiotic effects. Static batch culture fermentation was performed with faecal samples from three healthy volunteers to study the volume and composition of gas generated and changes in bacterial populations. Four carbohydrates alone or mixed with one another (50:50) were examined. Prebiotic index (PI) was calculated and used to compare the prebiotic effect. The high amount of gas produced by IN was reduced by mixing it with FOS. No reduction in gas generation was observed when POL and ISO mixed with other substrates. It was found that the mixture of IN and FOS was effective in reducing the amount of gas produced while augmenting or maintaining their potential to Support the growth of bifidobacteria in Faecal batch culture as the highest PI was achieved with FOS alone and a mixture of FOS and IN. It was also found that high volume of gas was generated in presence of POL and ISO and they had lower prebiotic effect. The results of this study imply that a Mixture of prebiotics could prove effective in reducing the amount of gas generated by the gut microflora. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aroma volatiles of four cultivars of muskmelon were examined using solid phase microextraction, followed by gas chromatography-mass spectrometry. The melons studied were Galia, from the reticulatus group, cantaloupe, from the cantaloupensis group, and honeydew and Piel de Sapo, from the inodorus group. Quantitative and qualitative differences existed between all four cultivars. Possible pathways for the formation of volatile compounds in melons are discussed.
Resumo:
Grouping by luminance and shape similarity has previously been demonstrated in neonates and at 4 months, respectively. By contrast, grouping by proximity has hitherto not been investigated in infancy. This is also the first study to chart the developmental emergence of perceptual grouping longitudinally. Sixty-one infants were presented with a matrix of local stimuli grouped horizontally or vertically by luminance, shape or proximity at 2, 4, and 6 months. Infants were exposed to each set of stimuli for three presentation durations. Grouping was demonstrated for luminance similarity at the earliest testing age, 2 months, by shape similarity at 4 months, but was not observed for grouping by proximity. Grouping by shape similarity showed a distinctive pattern of grouping ability across exposure durations, which reflected familiarity preferences followed by novelty preferences. This remained stable across age. No link was found between the emergence of perceptual grouping ability and the exposure duration required to elicit grouping. We conclude by stressing the importance of longitudinal studies of infant development in furthering our understanding of human cognition, rather than relying on assumptions from the adult endstate.
Resumo:
The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud
Resumo:
The discovery of polymers with stimuli responsive physical properties is a rapidly expanding area of research. At the forefront of the field are self-healing polymers, which, when fractured can regain the mechanical properties of the material either autonomically, or in response to a stimulus. It has long been known that it is possible to promote healing in conventional thermoplastics by heating the fracture zone above the Tg of the polymer under pressure. This process requires reptation and subsequent re-entanglement of macromolecules across the fracture void, which serves to bridge, and ‘heal’ the crack. The timescale for this mechanism is highly dependent on the molecular weight of the polymer being studied. This process is in contrast to that required to affect healing in supramolecular polymers such as the plasticised, hydrogen bonded elastomer reported by Leibler et al. The disparity in bond energies between the non-covalent and covalent bonds within supramolecular polymers results in fractures propagating through scission of the comparatively weak supramolecular interactions, rather than through breaking the stronger, covalent bonds. Thus, during the healing process the macromolecules surrounding the fracture site only need sufficient energy to re-engage their supramolecular interactions in order to regenerate the strength of the pristine material. Herein we describe the design, synthesis and optimization of a new class of supramolecular polymer blends that harness the reversible nature of pi-pi stacking and hydrogen bonding interactions to produce self-supporting films with facile healable characteristics.
Resumo:
An elastomeric, healable, supramolecular polymer blend comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl end groups is compatibilized by aromatic pi-pi stacking between the pi-electron-deficient diimide groups and the pi-electron-rich pyrenyl units. This interpolymer interaction is the key to forming a tough, healable, elastomeric material. Variable-temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the pi-pi stacking interactions. Variable-temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.
Resumo:
Rh-I-terpyridine complexes have been unambiguously formed for the first time. The 2,21:6',2"-terpyridine (tpy), 4'-chloro-2,2':6',2"-terpyridine (4'-Cl-tpy) and 4'-(tert-butyldimethylsilyl-ortho-carboranyl)-2,2':6',2"-terpyridine (carboranyl-tpy) ligands were used for successful syntheses and characterisation of the corresponding Rh-I complexes with halide coligands, [Rh(X)(4'-Y-terpyridine)] (X = Cl, Y = H, Cl, carboranyl; X = Br, Y = H). All four neutral Rh-tpy complexes are square planar, with Rh-X bonds in the plane of the 4'-Y-terpyridine ligands. Full characterisation of these dark blue, highly air-sensitive compounds was hampered by their poor solubility in various organic solvents. This is mainly due to the formation of pi-stacked aggregates, as evidenced by the crystal structure of [Rh(Cl)(tpy)]; in addition, [Rh(Cl)(carboranyl-tpy)] merely forms discrete dimers. The (bonding) properties of the novel Rh-I-terpyridine complexes have been studied with single-crystal X-ray diffraction, (time-dependent) density functional theoretical (DFT) calculations, far-infrared spectroscopy, electronic absorption spectroscopy and cyclic voltammetry. From DFT calculations, the HOMO of the studied Rh-I-terpyridine complexes involves predominantly the metal centre, while the LUMO resides on the terpyridine ligand. Absorption bands of the studied complexes in the visible region (400-900 nm) can be assigned to MLCT and MLCT/XLCT transitions. The relatively low oxidation potentials of [Rh(X)(tpy)] (X = Cl, Br) point to a high electron density on the metal centre. This makes the Rh-I-terpyridine complexes strongly nucleophilic and (potentially) highly reactive towards various (small) substrate molecules containing carbon-halide bonds.