991 resultados para forward solution
Resumo:
Modern theories of motor control incorporate forward models that combine sensory information and motor commands to predict future sensory states. Such models circumvent unavoidable neural delays associated with on-line feedback control. Here we show that signals in human muscle spindle afferents during unconstrained wrist and finger movements predict future kinematic states of their parent muscle. Specifically, we show that the discharges of type Ia afferents are best correlated with the velocity of length changes in their parent muscles approximately 100-160 ms in the future and that their discharges vary depending on motor sequences in a way that cannot be explained by the state of their parent muscle alone. We therefore conclude that muscle spindles can act as "forward sensory models": they are affected both by the current state of their parent muscle and by efferent (fusimotor) control, and their discharges represent future kinematic states. If this conjecture is correct, then sensorimotor learning implies learning how to control not only the skeletal muscles but also the fusimotor system.
Resumo:
Multimode sound radiation from an unflanged, semi-infinite, rigid-walled circular duct with uniform subsonic mean flow everywhere is investigated theoretically. The multimode directivity depends on the amplitude and directivity function of each individual cut-on mode. The amplitude of each mode is expressed as a function of cut-on ratio for a uniform distribution of incoherent monopoles, a uniform distribution of incoherent axial dipoles, and for equal power per mode. The directivity function of each mode is obtained by applying a Lorentz transformation to the zero-flow directivity function, which is given by a Wiener-Hopf solution. This exact numerical result is compared to an analytic solution, valid in the high-frequency limit, for multimode directivity with uniform flow. The high-frequency asymptotic solution is derived assuming total transmission of power at the open end of the duct, and gives the multimode directivity function with flow in the forward arc for a general family of mode amplitude distribution functions. At high frequencies the agreement between the exact and asymptotic solutions is shown to be excellent.
A sequential Monte Carlo EM solution to the transcription factor binding site identification problem
Resumo:
This paper presents a numerical method for the simulation of flow in turbomachinery blade rows using a solution-adaptive mesh methodology. The fully three-dimensional, compressible, Reynolds-averaged Navier-Stokes equations with k-ε turbulence modeling (and low Reynolds number damping terms) are solved on an unstructured mesh formed from tetrahedral finite volumes. At stages in the solution, mesh refinement is carried out based on flagging cell faces with either a fractional variation of a chosen variable (like Mach number) greater than a given threshold or with a mean value of the chosen variable within a given range. Several solutions are presented, including that for the highly three-dimensional flow associated with the corner stall and secondary flow in a transonic compressor cascade, to demonstrate the potential of the new method.
Resumo:
It is essential to monitor deteriorated civil engineering structures cautiously to detect symptoms of their serious disruptions. A wireless sensor network can be an effective system for monitoring civil engineering structures. It is fast to deploy sensors especially in difficult-to-access areas, and it is extendable without any cable extensions. Since our target is to monitor deteriorations of civil engineering structures such as cracks at tunnel linings, most of the locations of sensors are known, and sensors are not required to move dynamically. Therefore, we focus on developing a deployment plan of a static network in order to reduce the value of a cost function such as initial installation cost and summation of communication distances of the network. The key issue of the deployment is the location of relays that forward sensing data from sensors to a data collection device called a gateway. In this paper, we propose a relay deployment-planning tool that can be used to design a wireless sensor network for monitoring civil engineering structures. For the planning tool, we formalize the model and implement a local search based algorithm to find a quasi-optimal solution. Our solution guarantees two routings from a sensor to a gateway, which can provide higher reliability of the network. We also show the application of our experimental tool to the actual environment in the London Underground.
Resumo:
Multimode sound radiation from hard-walled semi-infinite ducts with uniform subsonic flow is investigated theoretically. An analytic expression, valid in the high frequency limit, is derived for the multimode directivity function in the forward arc for a general family of mode distribution functions. The multimode directivity depends on the amplitude and directivity function of each individual mode. The amplitude of each mode is expressed as a function of cut-off ratio for a uniform distribution of incoherent monopoles, a uniform distribution of incoherent axial dipoles and for equal power per mode. The modes' directivity functions are obtained analytically by applying a Lorentz transformation to the zero flow solution. The analytic formula for the multimode directivity with flow is derived assuming total transmission of power at the open-end of the duct. This formula is compared to the exact numerical result for an unflanged duct, computed utilizing a Wiener-Hopf solution. The agreement is shown to be excellent. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Accurate and efficient computation of the nearest wall distance d (or level set) is important for many areas of computational science/engineering. Differential equation-based distance/ level set algorithms, such as the hyperbolic-natured Eikonal equation, have demonstrated valuable computational efficiency. Here, in the context, as an 'auxiliary' equation to the main flow equations, the Eikonal equation is solved efficiently with two different finite volume approaches (the cell vertex and cell-centered). Application of the distance solution is studied for various geometries. Moreover, a procedure using the differential field to obtain the medial axis transform (MAT) for different geometries is presented. The latter provides a skeleton representation of geometric models that has many useful analysis properties. As an alternative approach to the pure geometric methods (e.g. the Voronoi approach), the current d-MAT procedure bypasses many difficulties that are usually encountered by pure geometric methods, especially in three dimensional space. It is also shown that the d-MAT approach provides the potential to sculpt/control the MAT form for specialized solution purposes. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Common-rail fuel injection systems on modern light duty diesel engines are effectively able to respond instantaneously to changes in the demanded injection quantity. In contrast, the air-system is subject to significantly slower dynamics, primarily due to filling/emptying effects in the manifolds and turbocharger inertia. The behaviour of the air-path in a diesel engine is therefore the main limiting factor in terms of engine-out emissions during transient operation. This paper presents a simple mean-value model for the air-path during throttled operation, which is used to design a feed-forward controller that delivers very rapid changes in the in-cylinder charge properties. The feed-forward control action is validated using a state-of-the-art sampling system that allows true cycle-by-cycle measurement of the in-cylinder CO2 concentration. © 2011 SAE International.