987 resultados para first offender
Resumo:
Simulation of materials at the atomistic level is an important tool in studying microscopic structure and processes. The atomic interactions necessary for the simulation are correctly described by Quantum Mechanics. However, the computational resources required to solve the quantum mechanical equations limits the use of Quantum Mechanics at most to a few hundreds of atoms and only to a small fraction of the available configurational space. This thesis presents the results of my research on the development of a new interatomic potential generation scheme, which we refer to as Gaussian Approximation Potentials. In our framework, the quantum mechanical potential energy surface is interpolated between a set of predetermined values at different points in atomic configurational space by a non-linear, non-parametric regression method, the Gaussian Process. To perform the fitting, we represent the atomic environments by the bispectrum, which is invariant to permutations of the atoms in the neighbourhood and to global rotations. The result is a general scheme, that allows one to generate interatomic potentials based on arbitrary quantum mechanical data. We built a series of Gaussian Approximation Potentials using data obtained from Density Functional Theory and tested the capabilities of the method. We showed that our models reproduce the quantum mechanical potential energy surface remarkably well for the group IV semiconductors, iron and gallium nitride. Our potentials, while maintaining quantum mechanical accuracy, are several orders of magnitude faster than Quantum Mechanical methods.
Resumo:
Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for solid, liquid and cluster forms of water. We use a many-body separation of the total energy into its 1-body, 2-body (2B) and beyond-2-body (B2B) components to analyze the deficiencies of two popular DFT approximations. We show how machine-learning methods make this analysis possible for ice structures as well as for water clusters. We find that the crucial energy balance between compact and extended geometries can be distorted by 2B and B2B errors, and that both types of first-principles error are important.
Resumo:
Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for cluster, solid, and liquid forms of water. Recent work has stressed the importance of DFT errors in describing dispersion, but we note that errors in other parts of the energy may also contribute. We obtain information about the nature of DFT errors by using a many-body separation of the total energy into its 1-body, 2-body, and beyond-2-body components to analyze the deficiencies of the popular PBE and BLYP approximations for the energetics of water clusters and ice structures. The errors of these approximations are computed by using accurate benchmark energies from the coupled-cluster technique of molecular quantum chemistry and from quantum Monte Carlo calculations. The systems studied are isomers of the water hexamer cluster, the crystal structures Ih, II, XV, and VIII of ice, and two clusters extracted from ice VIII. For the binding energies of these systems, we use the machine-learning technique of Gaussian Approximation Potentials to correct successively for 1-body and 2-body errors of the DFT approximations. We find that even after correction for these errors, substantial beyond-2-body errors remain. The characteristics of the 2-body and beyond-2-body errors of PBE are completely different from those of BLYP, but the errors of both approximations disfavor the close approach of non-hydrogen-bonded monomers. We note the possible relevance of our findings to the understanding of liquid water.
Resumo:
Six strains of Gram-positive, catalase-negative, non-motile, irregular short rod-shaped Weissella bacteria, with width and length of 0.5-0.6 and 1.2-2.7 mu m were isolated from diseased rainbow trout Oncorhynchus mykiss (Walbaum) in winter of 2007 at a commercial fishery in Jingmen, Hubei province, China. The diseased rainbow trout exhibited hemorrhage in eyes, anal region, intestine and abdomen wall, petechia of liver, some fish with hydrocele in stomach. Six isolates had identical biochemical reactions, phylogenetic analysis of 16S rDNA sequences, amplified ribosomal DNA restriction analysis (ARDRA), enzymatic profile analysis and antimicrobial susceptibility results, indicating as a single clonal outbreak. But all were different from any other validated twelve Weissella species in the term of physiological and biochemical characters. It is indicated that isolates are phylogenetically closer to Weissella halotolerans, Weissella viridescens and Weissella minor on 16S rDNA phylogenetic analysis result, than to W halotolerans and W viridescens on the result of ARDRA study and enzymatic profile analysis. Antimicrobial susceptibility testing was used to scan effective drugs for the therapy of this disease. Experimental infection assays with one isolate were conducted and pathogenicity (by intraperitoneal injection) was demonstrated in rainbow trout O. mykiss (Walbaum) and crucian carp (Carassius auratus gibelio) fingerlings. Because no Weissella was detected in fish feedstuffs and pond water, the source of this pathogen remains unknown, and Weissella isolates were regarded as an opportunistic pathogen for rainbow trout. This is the first report of Weissella strains which can cause disease of cultured fish in the world. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, an IL-8 homologue has been cloned and identified from a reptile, Chinese soft-shelled turtle for the first time. The full-length cDNA of turtle IL-8 was 1188 bp and contained a 312 bp open reading frame (ORF) coding for a protein of 104 amino acids. The chemokine CXC domain, which contained Glu-Leu-Arg (ELR) motif and four cysteine residues, was well conserved in turtle IL-8. The 4924 bp genomic DNA of turtle IL-8 contained four exons and three introns. Phylogenetic analysis showed that the amino acid sequence of turtle IL-8 clustered together with birds. RT-PCR analysis showed that turtle IL-8 mRNA was constitutively expressed liver, spleen, kidney, heart, blood and intestine tissues of control turtles. Real-time quantitative PCR analysis further indicated that the turtle IL-8 mRNA expression was apparent in various tissues at 8 h and up-regulated significantly during 8 h-7 d after Aeromonas hydrophila infection. The present studies will help us to understand the evolution of IL-8 molecule and the inflammatory response mechanism in reptiles. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins are heptapeptide toxins produced by cyanobacteria. Microcystin-RR(MC-RR) is a common variant among the 80 variants identified so far. There have been many investigations documenting the toxic effects of microcystins on animals and higher plants, but little is known on the toxic effects of microcystins on algae, especially at molecular level. We studied the effects of MC-RR on gene expression profile of a few antioxidant enzymes and heat shock protein-70 (Hsp70) in Synechocystis sp. PCC6803. After two days post-exposure, a high dose toxin (5 mg/l, about 4.8 x 10(-3) mM) significantly increased expression levels of the genes gpx1, sodB, katG, acnB, gamma-TMTand dnaK2, while a relatively low dose toxin (1 mg/l, about 9.63 x 10(-4) mM) induced a moderate and slow increase of gene expression. Our results indicate that MC-RR could induce the oxidative stress in Synechocystis sp. PCC6803 and the increase in gene expression of antioxidant enzymes and Hsp70 might protect the organism from the oxidative damage. in addition, cell aggregation was observed during the early period of exposure, which might be a specific oxidative stress reaction to MC-RR. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Hepatotoxic microcystins (MCs) are the most commonly reported cyanotoxins in eutrophic freshwaters. In 1996, human intoxications by MCs caused deaths of 76 patients at Caruaru dialysis centers in Brazil. So far, there have been no direct evidences of MC occurrence in human tissue in consequence of exposure to MC. In this study, we improved cleanup procedures for detecting MCs in serum sample using liquid chromatographymass spectrometry, and confirmed for the first time the presence of MCs in serum samples (average 0.39 ng/ml, which amounts to ca. 1/87 of the concentrations found in tissue samples of the Caruaru victims) of fishermen at Lake Chaohu. Daily intake by the fishermen was estimated to be in the range of 2.2-3.9 mu g MC-LReq, whereas the provisional World Health Organization tolerable daily intake (TDI) for daily lifetime exposure is 0.04 mu g/kg or 2-3 mu g per person. Moreover, statistical analysis showed closer positive relationships between MC serum concentrations and concentrations of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase than between the MC concentrations and other biochemical indicators. Thus, the data raise the question whether extended exposure in the range of the TDI or up to a factor of 10 above it may already lead to indication of liver damage. The results also demonstrate a risk of health effects from chronic exposure to MCs at least for populations with high levels of exposure, like these fishermen.
Resumo:
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichotvensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages. (c) 2008 Published by Elsevier Inc.
Resumo:
Two ciliated protozoa, Balantidium sinensis Nie 1935 and Balantidium andianusi n. sp., were isolated from the feces of a wild Chinese giant salamander (Andrias davidianus) captured from the mountainous area of Shiyan, Hubei Province, Central China in October 2006. It is the first report of Balantidium species inhabiting Cryptobranchoidea amphibians. The occurrence of B. sinensis in A. davidianus should be a new record because the type specimens were first discovered and named by Nie in 1935 from Rana nigromaculata and Rana plancyi. For the lack of enough descriptions of taxonomic features in the previous report, it was re-described in detail and compared with Nie's type specimens and B. giganteum to complete the morphological descriptions in the present work. B. andianusi n. sp. was considered to be a new species based on its unique morphological characteristics, especially the high length/width ratio of the vestibulum (8:1). Comparisons were also made among Balantidium species that were found from urodele amphibians.
Resumo:
An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP) scheme to atomistic modelling of tungsten - a bcc transition metal which exhibits a brittle-to-ductile transition and whose plasticity behaviour is controlled by the properties of $\frac{1}{2} \langle 111 \rangle$ screw dislocations. We apply Gaussian process regression to interpolate the quantum-mechanical (QM) potential energy surface from a set of points in atomic configuration space. Our training data is based on QM information that is computed directly using density functional theory (DFT). To perform the fitting, we represent atomic environments using a set of rotationally, permutationally and reflection invariant parameters which act as the independent variables in our equations of non-parametric, non-linear regression. We develop a protocol for generating GAP models capable of describing lattice defects in metals by building a series of interatomic potentials for tungsten. We then demonstrate that a GAP potential based on a Smooth Overlap of Atomic Positions (SOAP) covariance function provides a description of the $\frac{1}{2} \langle 111 \rangle$ screw dislocation that is in agreement with the DFT model. We use this potential to simulate the mobility of $\frac{1}{2} \langle 111 \rangle$ screw dislocations by computing the Peierls barrier and model dislocation-vacancy interactions to QM accuracy in a system containing more than 100,000 atoms.
Resumo:
The Yangtze River dolphin or baiji ( Lipotes vexillifer), an obligate freshwater odontocete known only from the middle-lower Yangtze River system and neighbouring Qiantang River in eastern China, has long been recognized as one of the world's rarest and most threatened mammal species. The status of the baiji has not been investigated since the late 1990s, when the surviving population was estimated to be as low as 13 individuals. An intensive six-week multivessel visual and acoustic survey carried out in November-December 2006, covering the entire historical range of the baiji in the main Yangtze channel, failed to find any evidence that the species survives. We are forced to conclude that the baiji is now likely to be extinct, probably due to unsustainable by-catch in local fisheries. This represents the first global extinction of a large vertebrate for over 50 years, only the fourth disappearance of an entire mammal family since AD 1500, and the first cetacean species to be driven to extinction by human activity. Immediate and extreme measures may be necessary to prevent the extinction of other endangered cetaceans, including the sympatric Yangtze finless porpoise ( Neophocaena phocaenoides asiaeorientalis).