773 resultados para finite strain, structural geology, ductile strain, microstructure
Resumo:
Calcific aortic valve disease (CAVD) is a chronic disorder characterized by an abnormal mineralization of the leaflets, which is accelerated in bicuspid aortic valve (BAV). It is suspected that mechanical strain may promote/enhance mineralization of the aortic valve. However, the effect of mechanical strain and the involved pathways during mineralization of the aortic valve remains largely unknown. Valve interstitial cells (VICs) were isolated and studied under strain conditions. Human bicuspid aortic valves were examined as a model relevant to increase mechanical strain. Cyclic strain increased mineralization of VICs by several-fold. Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analyses revealed that mechanical strain promoted the formation of mineralized spheroid microparticles, which coalesced into larger structure at the surface of apoptotic VICs. Apoptosis and mineralization were closely associated with expression of ENPP1. Inhibition of ENPP1 greatly reduced mineralization of VIC cultures. Through several lines of evidence we showed that mechanical strain promoted the export of ENPP1-containing vesicles to the plasma membrane through a RhoA/ROCK pathway. Studies conducted in human BAV revealed the presence of spheroid mineralized structures along with the expression of ENPP1 in areas of high mechanical strain. Mechanical strain promotes the production and accumulation of spheroid mineralized microparticles by VICs, which may represent one important underlying mechanism involved in aortic valve mineralization. RhoA/ROCK-mediated export of ENPP1 to the plasma membrane promotes strain-induced mineralization of VICs.
Resumo:
The present work aims to study the possible causes of cracks founded and recovered in translation cars of ore Forklift / ore Reclaimer. To identify the possible causes of cracks observed on the equipment it was used a static approach analysis, using a finite element method as an analysis tool, using a specific structural analysis program. After making the model, a strain gage measurement was necessary because there may be significant amounts of masses of non-structural components that were not modeled and were not available in the drawings, as well as fouling ore. With the calibrated model it was processed analyses with the load cases of dead load, product, wind and excavation. After the processing, it was observed that none of these load cases resulted in values that caused the crack, so another three hypotheses were tested: depression and misalignment, jacking and translation of only three cars. Of these three hypotheses it was observed that the jacking coud be the cause of the cracks, because the distribution of stress. Due to the miss of parameters, like the height utilized in this process, it was not possible to affirm the real stress level
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In view of the low loading values commonly employed in dentistry, a load-application device (LAD) was developed as option to the universal testing machine (UTM), using strain gauge analysis. The aim of this study was to develop a load-application device (LAD) and compare the LAD with the UTM apparatus under axial and non-axial loads. An external hexagonal implant was inserted into a polyurethane block and one EsthetiCone abutment was connected to the implant. A plastic prosthetic cylinder was screwed onto the abutment and a conical pattern crown was fabricated using acrylic resin. An impression was made and ten identical standard acrylic resin patterns were obtained from the crown impression, which were cast in nickel-chromium alloy (n=10). Four strain gauges were bonded diametrically around the implant. The specimens were subjected to central (C) and lateral (L) axial loads of 30 kgf, on both devices: G1: LAD/C; G2: LAD/L; G3: UTM/C; G4: UTM/L. The data (με) were statistically analyzed by repeated measures ANOVA and Tukey's test (p<0.05). No statistically significant difference was found between the UTM and LAD devices, regardless of the type of load. It was concluded that the LAD is a reliable alternative, which induces microstrains to implants similar to those obtained with the UTM.
Resumo:
The aim of this in vitro study was to use strain gauge (SG) analysis to compare the effects of the implant-abutment joint, the coping, and the location of load on strain distribution in the bone around implants supporting 3-unit fixed partial prostheses. Three external hexagon (EH) implants and 3 internal hexagon (IH) implants were inserted into 2 polyurethane blocks. Microunit abutments were screwed onto their respective implant groups. Machined cobalt-chromium copings and plastic copings were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in a cobalt-chromium alloy (n = 5): group 1 = EH/machined. group 2 = EH/plastic, group 3 = IH/machined, and group 4 = IH/plastic. Four SGs were bonded onto the surface of the block tangentially to the implants. Each metallic structure was screwed onto the abutments and an axial load of 30 kg was applied at 5 predetermined points. The magnitude of microstrain on each SG was recorded in units of microstrain (mu epsilon). The data were analyzed using 3-factor repeated measures analysis of variance and a Tukey test (alpha = 0.05). The results showed statistically significant differences for the type of implant-abutment joint, loading point, and interaction at the implant-abutment joint/loading point. The IH connection showed higher microstrain values than the EH connection. It was concluded that the type of coping did not interfere in the magnitude of microstrain, but the implant/abutment joint and axial loading location influenced this magnitude.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to experimentally evaluate infection in Gallus gallus domesticus with Neospora caninum tachyzoites of the NC-1 strain. Experimental infection was conducted in 90-day-old chickens, embryonated eggs and bioassays in dogs. In the first experiment, poults were randomly divided into four groups. Groups I and II were provided feed with coccidiostat, whereas groups III and IV received feed without coccidiostat. When the poults from groups I and III reached 90 days of age, they received a subcutaneous inoculation of N. caninum. Once the hens entered their egg-laying period, during the following 30 days, the eggs were collected, identified, weighed and placed in an incubator. On the 70th day after inoculation, all animals, including the chicks, were euthanized. Tissue samples from the adult poultry and chicks were collected for histopathology, immunohistochemistry (IHC) and PCR. Brain tissue and pectoral muscle samples from infected birds were fed to two dogs. Notably, the average weight of the group III eggs was lower than that of the group IV eggs (p <0.05). No changes consistent with infection in adult poultry or chicks were detected by histopathology or IHC; moreover, no amplified parasite DNA was detected in the birds'tissues or dogs'feces. No dog eliminated oocysts. In the second experiment, the embryonated chicken eggs were inoculated with 1 x 10(2) N. caninum tachyzoites, on the 10th day of incubation, and chicks born from these eggs were housed in boxes suitable for the species and received commercial feed and distilled water ad libitum. On the 30th day after infection (DAI), the poultry were euthanized, and their organs were processed as described in experiment I. The amplification of parasite DNA was observed in the spleen and pectoral muscles of one of the birds. The ingestion of bird tissues by dogs did not result in oocyst elimination. These results indicate that the parasite may have been eliminated by the host and that the use of tachyzoites to induce chronic disease might be a poor source for hens. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Canine ehrlichiosis is caused by the bacterium Ehrlichia canis and is characterized by a systemic febrile disease of unknown pathogenesis. This study evaluated the expression of cytokines TNF-alpha, IL-10, IFN-gamma, in splenic cells and blood leukocytes during the acute phase of ehrlichiosis and after treatment with doxycycline hyclate in dogs experimentally infected with the E. canis Jaboticabal strain. The study results showed a significant expression of TNF-alpha 18 days post-inoculation, reducing by approximately 70% after treatment. There was a unique peak of expression of IL-10 and IFN-gamma 18 and 30 days post-inoculation, respectively. This study suggests that TNF-alpha plays a role in the pathogenesis of the acute phase of canine ehrlichiosis and that treatment with doxycycline hyclate reduces the systemic effects of this cytokine, possibly by reducing or eliminating parasitemia.
Resumo:
Here, we present the draft genome sequence of Komagatabaeicter rhaeticus strain AF1, which was isolated from Kombucha tea and is capable of producing high levels of cellulose.
Resumo:
Salmonella enterica subsp. enterica serovar Gallinarum biovar Pullorum is a bird-restricted pathogen which causes pullorum disease. The strain FCAV198 was isolated from a pool of chicken ovaries in Brazil, and its genome may be helpful for studies involving molecular mechanisms related to pathogenesis and other related applications.
Resumo:
Escherichia coli is suspected to be involved with Crohn's disease. Adherence and invasion to epithelial cells are properties commonly observed in these bacteria. Here, we present a draft genome sequence of E. coli D92/09, a multidrug-resistant strain, which besides showing these properties produces Shiga cytotoxin-1 and possibly other toxins.
Resumo:
Interferon-γ (IFN-γ) contributes to host resistance during acute infection with Trypanosoma cruzi, the causative agent of Chagas’ disease. Inducibly expressed guanosine triphosphatase (IGTP), a 48-kDa guanosine triphosphatase (GTPase), is a member of a family of GTPase proteins inducibly expressed by IFN-γ. The expression pattern of IGTP suggests that it may mediate IFN-γ–induced responses in a variety of cell types. IGTP has been demonstrated to be important for control of Toxoplasma gondii infection but not for resistance against Listeria monocytogenes. We evaluated the role of IGTP in development of chronic chagasic cardiomyopathy in IGTP null mice and C57X129sv (wild type [WT]) mice infected with the Brazil strain for 6 mo. There was no significant difference in parasitemia or cardiac histopathology between null and WT mice. Right ventricular remodeling was observed in infected IGTP null mice, suggesting that IGTP does not significantly alter the course of T. cruzi infection.
Resumo:
The Saccharomyces cerevisiae strains widely used for industrial fuel-ethanol production have been developed by selection, but their underlying beneficial genetic polymorphisms remain unknown. Here, we report the draft whole-genome sequence of the S. cerevisiae strain CAT-1, which is a dominant fuel-ethanol fermentative strain from the sugarcane industry in Brazil. Our results indicate that strain CAT-1 is a highly heterozygous diploid yeast strain, and the similar to 12-Mb genome of CAT-1, when compared with the reference S228c genome, contains similar to 36,000 homozygous and similar to 30,000 heterozygous single nucleotide polymorphisms, exhibiting an uneven distribution among chromosomes due to large genomic regions of loss of heterozygosity (LOH). In total, 58 % of the 6,652 predicted protein-coding genes of the CAT-1 genome constitute different alleles when compared with the genes present in the reference S288c genome. The CAT-1 genome contains a reduced number of transposable elements, as well as several gene deletions and duplications, especially at telomeric regions, some correlated with several of the physiological characteristics of this industrial fuel-ethanol strain. Phylogenetic analyses revealed that some genes were likely associated with traits important for bioethanol production. Identifying and characterizing the allelic variations controlling traits relevant to industrial fermentation should provide the basis for a forward genetics approach for developing better fermenting yeast strains.
Resumo:
Vibrio campbellii PEL22A was isolated from open ocean water in the Abrolhos Bank. The genome of PEL22A consists of 6,788,038 bp (the GC content is 45%). The number of coding sequences (CDS) is 6,359, as determined according to the Rapid Annotation using Subsystem Technology (RAST) server. The number of ribosomal genes is 80, of which 68 are tRNAs and 12 are rRNAs. V. campbellii PEL22A contains genes related to virulence and fitness, including a complete proteorhodopsin cluster, complete type II and III secretion systems, incomplete type I, IV, and VI secretion systems, a hemolysin, and CTX Phi.