879 resultados para fidelity encouragement
Resumo:
Iron deficiency is the commonest nutritional deficiency in the world. Although it affects adults, particularly women of reproductive age and during gestation, the most vulnerable group is children under two years of age. It affects mainly people living in developing countries, who have less access to balanced diets and health services and are exposed to precarious sanitary conditions. Iron deficiency has an impact on the immunity, adult work capacity and the cognitive development of children. Combating and preventing iron deficiency is one of the priorities in promoting public health. The strategies to achieve this end include the evaluation and correction of iron deficiency in pregnant women, the encouragement of breast feeding, oral iron supplementation in premature and newborn babies of low birth-weight, food enrichment and mobilization of the community.
Resumo:
Objective: To determine the accuracy of the variables related to the fixed-height stair-climbing test (SCT) using maximal oxygen uptake (V̇O 2 max) as the gold standard. Methods: The SCT was performed on a staircase consisting of 6 flights (72 steps; 12.16 m total height), with verbal encouragement, in 51 patients. Stair-climbing time was measured, the variables 'work' and 'power' also being calculated. The V̇O2 max was measured using ergospirometry according to the Balke protocol. We calculated the Pearson linear correlation (r), as well as the values of p, between the SCT variables and V̇O2 max. To determine accuracy, the V̇O 2 max cut-off point was set at 25 mL/kg/min, and individuals were classified as normal or altered. The cut-off points for the SCT variables were determined using the receiver operating characteristic curve. The Kappa statistic (k) was used in order to assess concordance. Results: The following values were obtained for the variable 'time': cut-off point = 40 s; mean = 41 ± 15.5 s; r = -0.707; p < 0.005; specificity = 89%; sensibility = 83%; accuracy = 86%; and k = 0.724. For 'power', the values obtained were as follows: cut-off point = 200 w; mean = 222.3 ± 95.2 w; r = 0.515; p < 0.005; specificity = 67%; sensibility= 75%; accuracy = 71%; and k = 0.414. Since the correlation between the variable 'work' and V̇O2 max was not significant, that variable was discarded. Conclusion: Of the SCT variables tested, using V̇O2 max as the gold standard, the variable 'time' was the most accurate.
Resumo:
One of the most important characteristics of intelligent activity is the ability to change behaviour according to many forms of feedback. Through learning an agent can interact with its environment to improve its performance over time. However, most of the techniques known that involves learning are time expensive, i.e., once the agent is supposed to learn over time by experimentation, the task has to be executed many times. Hence, high fidelity simulators can save a lot of time. In this context, this paper describes the framework designed to allow a team of real RoboNova-I humanoids robots to be simulated under USARSim environment. Details about the complete process of modeling and programming the robot are given, as well as the learning methodology proposed to improve robot's performance. Due to the use of a high fidelity model, the learning algorithms can be widely explored in simulation before adapted to real robots. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
The pCT deals with relatively thick targets like the human head or trunk. Thus, the fidelity of pCT as a tool for proton therapy planning depends on the accuracy of physical formulas used for proton interaction with thick absorbers. Although the actual overall accuracy of the proton stopping power in the Bethe-Bloch domain is about 1%, the analytical calculations and the Monte Carlo simulations with codes like TRIM/SRIM, MCNPX and GEANT4 do not agreed with each other. A tentative to validate the codes against experimental data for thick absorbers bring some difficulties: only a few data is available and the existing data sets have been acquired at different initial proton energies, and for different absorber materials. In this work we compare the results of our Monte Carlo simulations with existing experimental data in terms of reduced calibration curve, i.e. the range - energy dependence normalized on the range scale by the full projected CSDA range for given initial proton energy in a given material, taken from the NIST PSTAR database, and on the final proton energy scale - by the given initial energy of protons. This approach is almost energy and material independent. The results of our analysis are important for pCT development because the contradictions observed at arbitrary low initial proton energies could be easily scaled now to typical pCT energies. © 2010 American Institute of Physics.
Resumo:
Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Thus, the fidelity of proton computed tomography (pCT) simulations as a tool for proton therapy planning depends in the general case on the accuracy of results obtained for the proton interaction with thick absorbers. GEANT4 simulations of proton energy spectra after passing thick absorbers do not agree well with existing experimental data, as showed previously. Moreover, the spectra simulated for the Bethe-Bloch domain showed an unexpected sensitivity to the choice of low-energy electromagnetic models during the code execution. These observations were done with the GEANT4 version 8.2 during our simulations for pCT. This work describes in more details the simulations of the proton passage through aluminum absorbers with varied thickness. The simulations were done by modifying only the geometry in the Hadrontherapy Example, and for all available choices of the Electromagnetic Physics Models. As the most probable reasons for these effects is some specific feature in the code, or some specific implicit parameters in the GEANT4 manual, we continued our study with version 9.2 of the code. Some improvements in comparison with our previous results were obtained. The simulations were performed considering further applications for pCT development. © 2011 American Institute of Physics.
Resumo:
Self-efficacy to regular practice of physical activity (PA) can be defined as the ability to keep practicing exercises even with some obstacles that could appear. It is constituted through the influence of 4 main sources: mastery experiences, vicarious experiences, social persuasion and physiological and affective states. The aim of the study was to measure the level of self-efficacy to the regular practice of PA, its construction sources and correlate the level of self-efficacy with each one of the sources. An amount of 196 practitioners of PA took part in this study. The results showed that the level of self-efficacy was 111.19 points in scale that can range from 18 to 162 points. The most prominent source in the construction of self-efficacy was the social persuasion, with an average of 27.64 points in scale that can range from 4 to 36 points. For the correlations, it was used the Pearson coefficient (r). Mastery experiences stood out among the other sources (r = .30). The results agree with the literature, establishing the importance of the encouragement of close people in the maintenance of the behavior to practice PA, as well as to observe positive models, success experiences and feel comfortable during the exercises. © FTCD/FIP-MOC.
Resumo:
Includes bibliography
Resumo:
This paper presents a methodology for modeling high intensity discharge lamps based on artificial neural networks. The methodology provides a model which is able to represent the device operating in the frequency of distribution systems, facing events related to power quality. With the aid of a data acquisition system to monitor the laboratory experiment, and using $$\text{ MATLAB }^{\textregistered }$$ software, data was obtained for the training of two neural networks. These neural networks, working together, were able to represent with high fidelity the behavior of a discharge lamp. The excellent performance obtained by these models allowed the simulation of a group of lamps in a distribution system with shorter simulation time when compared to mathematical models. This fact justified the application of this family of loads in electric power systems. The representation of the device facing power quality disturbances also proved to be a useful tool for more complex studies in distribution systems. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Includes bibliography
Resumo:
Pós-graduação em Educação - FFC
Resumo:
Pós-graduação em Educação - FFC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)