999 resultados para extrato biológico
Resumo:
The Waltheria genus belonging to the Sterculiaceae family, it is reported as a prolific source of flavonoids and quinolone alkaloids, substances of great interest due to several associated biological activities. This work describes a novel phytochemical study from Waltheria ferruginea, aiming to contribute to the chemical knowledge of this specie and the isolation of substances with biological potential. For the phytochemical study were used chromatography techniques on silica gel and molecular exclusion in Sephadex LH-20.The structural elucidation of the isolated compounds was performed through spectrometric techniques 1H and 13C NMR, including uni and bidimensional pulse sequences, and comparison with data from literature. Five substances were isolated, namely: the flavonids kaempferol-3-O-β-(6''-cumaroil)-glucopyranoside (F1) and kaempferol -3 -O- β - glucopyranoside (F2), both analyzes with pharmacological properties, the flavonol quercetin-3-O-β-glucopyranoside (F3 ) pure and in the epimeric mixture α (F3') and (F3), the terpenegeranyl - geranyl (G1) and the 12-hydroxi-octadecanoic acid, all no previous reported in the literature.
Resumo:
The therapeutic use of medicinal plants has contributed since antiquity in a beneficial way for health. However, many species lacks of scientific evidence which provide basis for their use in therapeutic practice. In this context is the Genipa americana L. species (Rubiaceae), popularly known as jenipapo and used to treat syfilis, ulcer and hemorrhagic disturbs. It's also used against bruising, as tonic and as aphrodisiac. Due this species lacks toxicological studies, the aim of this study was to evaluate the toxicity in vivo (acute and sub-chronic toxicity) and in vitro (cytotoxicity) of the hydroethanolic extract from G. americana fruits. The hydroethanolic extract of G. americana fruits was prepared by maceration. A preliminary phytochemical analysis was performed to assess the presence of secondary metabolites in the extract. The cytotoxicity study of the extract (0.1, 1.0, 10, 100 and 1000 mg / 100 ul) were performed against normal cells (3T3) and tumor (786-0, HepG2 and B16), analyzed by the MTT assay. To evaluate the acute (single dose of 2000 mg / Kg) and subchronic (100, 500 and 1000 mg / kg for 30 days) toxicity Swiss mice of both sexes were used. At the end of the experiment, blood samples and organs were collected for analysis. Data between groups were compared by t test or ANOVA with Dunnett's post-test with 5% significance level. The phytochemical study of the extracts mainly indicated the presence of iridoids. Results for cytotoxicity tests showed up to 70% inhibition of B16 cell line at a dose of 1000 mg / 100 ul, and up to 29% inhibition of 786-0 at a dose of 10 ug / 100 ul. The extract did not cause death in 3T3 and HepG2 cells. During the in vivo assays, there were no animal deaths. Analysis of blood samples revealed that the animals submitted to the evaluation of acute toxicity had changes in AST and ALT, and that the animals evaluated for subchronic toxicity showed changes in the relative wet weight of the kidney and plasma urea concentration. No differences were observed between groups on histopathological evaluation of the collected organs. Despite the changes found in the in vivo toxicity tests, using the criteria described by the OECD Guidelines, it is suggested that the hydroethanolic extract of the fruits of the G. americana is classified as low toxicity. The cytotoxicity of the extract suggests that they have potential against melanoma cell lines (B16).
Resumo:
The therapeutic use of medicinal plants has contributed since antiquity in a beneficial way for health. However, many species lacks of scientific evidence which provide basis for their use in therapeutic practice. In this context is the Genipa americana L. species (Rubiaceae), popularly known as jenipapo and used to treat syfilis, ulcer and hemorrhagic disturbs. It's also used against bruising, as tonic and as aphrodisiac. Due this species lacks toxicological studies, the aim of this study was to evaluate the toxicity in vivo (acute and sub-chronic toxicity) and in vitro (cytotoxicity) of the hydroethanolic extract from G. americana fruits. The hydroethanolic extract of G. americana fruits was prepared by maceration. A preliminary phytochemical analysis was performed to assess the presence of secondary metabolites in the extract. The cytotoxicity study of the extract (0.1, 1.0, 10, 100 and 1000 mg / 100 ul) were performed against normal cells (3T3) and tumor (786-0, HepG2 and B16), analyzed by the MTT assay. To evaluate the acute (single dose of 2000 mg / Kg) and subchronic (100, 500 and 1000 mg / kg for 30 days) toxicity Swiss mice of both sexes were used. At the end of the experiment, blood samples and organs were collected for analysis. Data between groups were compared by t test or ANOVA with Dunnett's post-test with 5% significance level. The phytochemical study of the extracts mainly indicated the presence of iridoids. Results for cytotoxicity tests showed up to 70% inhibition of B16 cell line at a dose of 1000 mg / 100 ul, and up to 29% inhibition of 786-0 at a dose of 10 ug / 100 ul. The extract did not cause death in 3T3 and HepG2 cells. During the in vivo assays, there were no animal deaths. Analysis of blood samples revealed that the animals submitted to the evaluation of acute toxicity had changes in AST and ALT, and that the animals evaluated for subchronic toxicity showed changes in the relative wet weight of the kidney and plasma urea concentration. No differences were observed between groups on histopathological evaluation of the collected organs. Despite the changes found in the in vivo toxicity tests, using the criteria described by the OECD Guidelines, it is suggested that the hydroethanolic extract of the fruits of the G. americana is classified as low toxicity. The cytotoxicity of the extract suggests that they have potential against melanoma cell lines (B16).
Resumo:
Ulcerative colitis is a chronic disease characterized by inflammation in the intestinal mucosa, in most cases affects the colon and rectum. The therapeutic drugs are used as aminosalicylates and glucocorticosteroids, but due to the low response and the various side effects caused by them, reveals the need to search for new sources of useful compounds in the treatment of this disease.The species Anacardium occidentale popularly known as cashew, has been used for centuries in folk medicine in the healing aid of skin and mucosa lesions.Recent studies show its expressive antiulcerogenic effect, what we instigated to assess the effect of the extract of A. occidentaleleaves in rats with acute ulcerative colitis, therefore, 42 rats were used male Wistar, divided into 06 groups, and Negative Control (C) Positive Control (C +), treated with Sulfasalazine (Sz500) and treated with Extract A. occidentale at doses of 50 (Ao50), 100 (Ao100) and 200 mg / kg (Ao200).All groups were submitted to experimental colitis Ulcerative except C-, moreover, C- and C + received saline via gavage for 7 consecutive days while the other groups received their respective treatments.Euthanasia of animals took place on the 8th day in which it was collected intestinal colon sample for later analysis macroscopic, histopathological, morphometric and biochemistry, as well as complementary collection of blood and liver tissue. The extract is rich in saponins and phenolic compounds such as flavonoids (quercetin and kaempferol) and tannins.When the Sz500 groups and 100 showed significant protection to damage to lipids and proteins, among the groups subjected to experimental ulcerative colitis, the animals Ao100 group obtained the lowest score in all parameters analyzed.Treatment with 100 mg / kg of A. occidentale extract seems to have a combination of antiinflammatory, antioxidant, bactericidal and anabolic promoted by the bioactive compounds present in the extract.However, it is necessary to investigate harder treating dose of 100mg / kg to higher doses compared to elucidate more properly the best therapeutic dosage ulcerative colitis.
Resumo:
Snakebites are a serious public health problem in tropical and subtropical countries and Bothrops genus is responsible for the accidents in Brazil and throughout Latin America (90% of cases). The local effects (pain, edema, hemorrhage and myonecrosis) and systemic (cardiovascular alterations, shock and blood clotting disorders) caused by the venom of Bothrops are due to the numerous protein and non-protein components, which are part of the constitution of the poison. The only form of therapy is scientifically validated antivenom serum therapy which, however, is not effective with respect to local effects produced, risk of immunological reactions, high cost and difficult access in some regions. Thus, the search for new alternatives to serum therapy becomes important, and in this context, many medicinal plants have been highlighted by the popular use as antiophidic. Among these plants, we can mention the species Jatropha mollissima (Euphorbiaceae) which has popular use in traditional medicine as antiophidic, anti-inflammatory, antimicrobial and antipyretic. Therefore, this study aims to evaluate the neutralizing potential of local effects induced by the venom of Bothrops erythromelas and Bothrops jararaca with the aqueous extract of the leaves of J. mollissima. The leaf extracts were prepared by decoction, fractionated (by liquid-liquid partition) and characterized by thin layer chromatography (TLC) and High Performance Liquid Chromatography (HPLC). Antiophidic activity of the extract was evaluated in model of paw edema, peritonitis, bleeding and myotoxicity induced by venoms of B. jararaca and B. erythromelas. In all models, the extract was evaluated by intraperitoneal route at the doses of 50, 100 and 200 mg/kg, administered 30 minutes prior to injection of the venom (pretreatment protocol). Stains suggestive of the presence of flavonoids: apigenin, luteolin, orientin, isoorientin, vitexin and vitexin-2-O-rhamnoside were detected in the extract by co-CCD. By means of HPLC were identified isoorientin, orientin, vitexin and isovitexin. All tested doses of J. mollissima extract reduced the paw edema induced by the venom with intensity similar to dexamethasone. The aqueous extract of J. mollissima leaves on all evaluated doses, inhibited cell migration induced by B. jararaca and B. erythromelas promoting inhibition of recruitment of mononuclear cells and the polymorphonuclear cells. Local bleeding induced by B. jararaca venom was significantly inhibited by the extract. Both venoms were inhibited by the extract in myotoxic activity. These results indicate that the aqueous extract of J. mollissima leaves have snakebite potential, particularly with respect to local effects, which may justify the use of this plant in traditional medicine and complementary therapy as anti-venom serum.
Resumo:
Snakebites are a serious public health problem in tropical and subtropical countries and Bothrops genus is responsible for the accidents in Brazil and throughout Latin America (90% of cases). The local effects (pain, edema, hemorrhage and myonecrosis) and systemic (cardiovascular alterations, shock and blood clotting disorders) caused by the venom of Bothrops are due to the numerous protein and non-protein components, which are part of the constitution of the poison. The only form of therapy is scientifically validated antivenom serum therapy which, however, is not effective with respect to local effects produced, risk of immunological reactions, high cost and difficult access in some regions. Thus, the search for new alternatives to serum therapy becomes important, and in this context, many medicinal plants have been highlighted by the popular use as antiophidic. Among these plants, we can mention the species Jatropha mollissima (Euphorbiaceae) which has popular use in traditional medicine as antiophidic, anti-inflammatory, antimicrobial and antipyretic. Therefore, this study aims to evaluate the neutralizing potential of local effects induced by the venom of Bothrops erythromelas and Bothrops jararaca with the aqueous extract of the leaves of J. mollissima. The leaf extracts were prepared by decoction, fractionated (by liquid-liquid partition) and characterized by thin layer chromatography (TLC) and High Performance Liquid Chromatography (HPLC). Antiophidic activity of the extract was evaluated in model of paw edema, peritonitis, bleeding and myotoxicity induced by venoms of B. jararaca and B. erythromelas. In all models, the extract was evaluated by intraperitoneal route at the doses of 50, 100 and 200 mg/kg, administered 30 minutes prior to injection of the venom (pretreatment protocol). Stains suggestive of the presence of flavonoids: apigenin, luteolin, orientin, isoorientin, vitexin and vitexin-2-O-rhamnoside were detected in the extract by co-CCD. By means of HPLC were identified isoorientin, orientin, vitexin and isovitexin. All tested doses of J. mollissima extract reduced the paw edema induced by the venom with intensity similar to dexamethasone. The aqueous extract of J. mollissima leaves on all evaluated doses, inhibited cell migration induced by B. jararaca and B. erythromelas promoting inhibition of recruitment of mononuclear cells and the polymorphonuclear cells. Local bleeding induced by B. jararaca venom was significantly inhibited by the extract. Both venoms were inhibited by the extract in myotoxic activity. These results indicate that the aqueous extract of J. mollissima leaves have snakebite potential, particularly with respect to local effects, which may justify the use of this plant in traditional medicine and complementary therapy as anti-venom serum.
Resumo:
Inflammatory bowel diseases is composed by a set of chronic and inflammatory disorders, among them is ulcerative colitis (UC). UC treatment is based on anti-inflammatory administration; however, this group of drugs clearly leads to development of undesirable side effects, what stimulate the search for new therapies alternatives. The aim of this study was to evaluate the effect of hydroalcholic Turnera subulata extract on acetic acid-induced acute UC in rats. UC was induced by 1 mL injection of 4% acetic acid via rectal in Wistar mouse. 42 animals were distributed among 6 experimental groups: Control, UC, Sulfasalazine 500 mg/Kg/day (SSZ), T. subulata 50mg/Kg/day (TS 50), T. subulata 100mg/Kg/day (TS 100), T. subulata 200mg/Kg/day (TS 200). Throughout the experiment, body weight, food and water ingestion was daily evaluated. At the end of the experiment, the animals were euthanized and a colon fragment was observed by macroscopic analysis. Colon fragments were also collected for microscopic analysis and oxidative stress evaluation. The means from each group was compared by ANOVA test with a significance level of 5% (p<0.05) using GraphPad Prism Software. As results, we can clearly observe that SSZ group had the greater body weight decrease among the groups throughout the experiments, 14.78%, as well as, the lowest food intake, 6.23 g of food/day. The animals treated with T. subulata extracts showed no important body weight loss when compared to control. UC group showed the highest tissue damage macroscope score, 6.5, while TS 50 showed the lowest tissue damage score: 1. Microscope evaluation showed the presence of edema, haemorraghia and ulceration in all group of animals, except for Control. Nevertheless, TS 50 showed the lowest inflammatory damage among all groups. Oxidative stress analysis revealed that T. subulata treatment modulate catalase and superoxide dismutase activity, we also observed a decrease in protein and lipid peroxidation in response to extract administration. Taken together, these results shows that T. subulata extract exerts anti-inflammatory and anti-oxidant effects on experimental UC.
Resumo:
Inflammatory bowel diseases is composed by a set of chronic and inflammatory disorders, among them is ulcerative colitis (UC). UC treatment is based on anti-inflammatory administration; however, this group of drugs clearly leads to development of undesirable side effects, what stimulate the search for new therapies alternatives. The aim of this study was to evaluate the effect of hydroalcholic Turnera subulata extract on acetic acid-induced acute UC in rats. UC was induced by 1 mL injection of 4% acetic acid via rectal in Wistar mouse. 42 animals were distributed among 6 experimental groups: Control, UC, Sulfasalazine 500 mg/Kg/day (SSZ), T. subulata 50mg/Kg/day (TS 50), T. subulata 100mg/Kg/day (TS 100), T. subulata 200mg/Kg/day (TS 200). Throughout the experiment, body weight, food and water ingestion was daily evaluated. At the end of the experiment, the animals were euthanized and a colon fragment was observed by macroscopic analysis. Colon fragments were also collected for microscopic analysis and oxidative stress evaluation. The means from each group was compared by ANOVA test with a significance level of 5% (p<0.05) using GraphPad Prism Software. As results, we can clearly observe that SSZ group had the greater body weight decrease among the groups throughout the experiments, 14.78%, as well as, the lowest food intake, 6.23 g of food/day. The animals treated with T. subulata extracts showed no important body weight loss when compared to control. UC group showed the highest tissue damage macroscope score, 6.5, while TS 50 showed the lowest tissue damage score: 1. Microscope evaluation showed the presence of edema, haemorraghia and ulceration in all group of animals, except for Control. Nevertheless, TS 50 showed the lowest inflammatory damage among all groups. Oxidative stress analysis revealed that T. subulata treatment modulate catalase and superoxide dismutase activity, we also observed a decrease in protein and lipid peroxidation in response to extract administration. Taken together, these results shows that T. subulata extract exerts anti-inflammatory and anti-oxidant effects on experimental UC.
Resumo:
Fucoidan is a term used to define heteropolysaccharides that are composed of less than 90% L-fucose. The exception to this rule is the homofucoidan obtained from the seaweed Fucus vesiculosus. This fucoidan can be purchased from SIGMA Co. and have been used in various research for evaluation of their pharmacological activities. However, it is not a pure molecule. In fact, it is a mix of several fucoidan molecules. In this work, were obtained, from acetone precipitation, and biochemically characterized, four fucoidan molecules from SIGMA-ALDRICH Co. fucoidan to evaluate their anticoagulant, antioxidant, antiadipogenic, immunomodulatory and antiurolithiatic activities. In anticoagulant activity, evaluated by aPTT assay, fucoidans F0.9, F1.1 and F2.0 increased eightfold the coagulation time, compared to the control, when a mass of 10 μg was used. To PT test, only fucoidan F0.9 was capable of increase the coagulation time, compared to control. In the total antioxidant capacity assay (TAC), the fucoidan F2.0 showed 400 ascorbic acid equivalents, while fucoidan F0.5, the lest effective, 38 equivalents. In respect to the effect on pre-adipocyte cell lines (3T3-L1) adipogenesis, was observed that fucoidan F1.1 and F2.0 reduced the adipogenesis and this effect was associated to the reduction in the expression of regulatoy proteins C/EBPα, C/EBPβ and PPARγ. On the other hand, fucoidans F0.5 and F0.9 induced increased expression of these regulatory proteins. Furthermore, fucoidan F2.0 induced hydrolysis of triglycerides present in the interior of adipocytes. The immunomodulatory effect was evaluated and observed that the presence of fucoidans F0.5 , F1.1 and F2.0 significantly reduced the production of nitric oxide by activated macrophages with LPS specially fucoidan F2.0 that in 100 μg/mL, reduced about 55% the effect caused by LPS. Relative to the effect upon the formation of calcium oxalate crystals, fucoidan F0.5 was more effective in reduce the aggregation of the crystals and this effect it was not significantly different regarding the effect caused by the crude. Besides, fucoidan F0.5 only promoted the formation of COD type crystals, while fucoidans F1.1 and F2.0 did not influence the formation of crystals compared with the control. The results described in this study indicate that the commercial crude fucoidan of Fucus vesiculosus it’s a mix of several fucoidan which, in turn, have different chemical compositions besides having different pharmacological activities. The use of these fucoidans it´s indicated according the pharmacological activity to be evaluated.
Resumo:
Fucoidan is a term used to define heteropolysaccharides that are composed of less than 90% L-fucose. The exception to this rule is the homofucoidan obtained from the seaweed Fucus vesiculosus. This fucoidan can be purchased from SIGMA Co. and have been used in various research for evaluation of their pharmacological activities. However, it is not a pure molecule. In fact, it is a mix of several fucoidan molecules. In this work, were obtained, from acetone precipitation, and biochemically characterized, four fucoidan molecules from SIGMA-ALDRICH Co. fucoidan to evaluate their anticoagulant, antioxidant, antiadipogenic, immunomodulatory and antiurolithiatic activities. In anticoagulant activity, evaluated by aPTT assay, fucoidans F0.9, F1.1 and F2.0 increased eightfold the coagulation time, compared to the control, when a mass of 10 μg was used. To PT test, only fucoidan F0.9 was capable of increase the coagulation time, compared to control. In the total antioxidant capacity assay (TAC), the fucoidan F2.0 showed 400 ascorbic acid equivalents, while fucoidan F0.5, the lest effective, 38 equivalents. In respect to the effect on pre-adipocyte cell lines (3T3-L1) adipogenesis, was observed that fucoidan F1.1 and F2.0 reduced the adipogenesis and this effect was associated to the reduction in the expression of regulatoy proteins C/EBPα, C/EBPβ and PPARγ. On the other hand, fucoidans F0.5 and F0.9 induced increased expression of these regulatory proteins. Furthermore, fucoidan F2.0 induced hydrolysis of triglycerides present in the interior of adipocytes. The immunomodulatory effect was evaluated and observed that the presence of fucoidans F0.5 , F1.1 and F2.0 significantly reduced the production of nitric oxide by activated macrophages with LPS specially fucoidan F2.0 that in 100 μg/mL, reduced about 55% the effect caused by LPS. Relative to the effect upon the formation of calcium oxalate crystals, fucoidan F0.5 was more effective in reduce the aggregation of the crystals and this effect it was not significantly different regarding the effect caused by the crude. Besides, fucoidan F0.5 only promoted the formation of COD type crystals, while fucoidans F1.1 and F2.0 did not influence the formation of crystals compared with the control. The results described in this study indicate that the commercial crude fucoidan of Fucus vesiculosus it’s a mix of several fucoidan which, in turn, have different chemical compositions besides having different pharmacological activities. The use of these fucoidans it´s indicated according the pharmacological activity to be evaluated.
Resumo:
In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.
Resumo:
In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.
Resumo:
The theoretical and experimental developments in the biomaterials area have been directly applied to different fields of Medicine (odontology, regenerative medicine and radiotherapy). These advances have focused both for diagnosing diseases such as for quantifying degrees of progression. From the perspective of these studies, biomaterials are being designed and manufactured for application in various areas of science, provided advances in diagnostic radiology, radiotherapy dosimetry and calibration of radiotherapy equipment. Develop a phantom from a biomaterial has become a great ally of medicine in the treat patients with oncological diseases, allowing better performance of the equipment in order to reduce damage to healthy tissue due to excessive exposure to radiation. This work used polymers: chitosan and gelatin, for making the polymeric structures and controlled for different types of production and processing, characterizing and evaluating the biopolymer by physical techniques (STL, SEM and DEI) and therefore analyze applicability as phantom mouse lung. It was possible to evaluate the morphology of biomaterials quantitatively by scanning electron microscopy associated with imaging technique. The relevance of this work focuses on developing a phantom from polymeric biomaterials that can act as phantom providing high image contrast when subjected to analysis. Thus, the choice of DEI technique is satisfactory since it is an imaging technique of X-ray high resolution. The images obtained by DEI have shown the details of the internal microstructure of the biomaterial produced which have ≈ 10 μm dimension. The phantoms had made density ranging from 0.08 a 0.13 g/cm3.
Resumo:
The Banisteriopsis genus is widespread in traditional medicine. This work aims to contribute with information about the chemical composition and on the evaluation of the biological activity of the essential oil, the ethanol extract of the leaves and partitions of the Banisteriopsis laevifolia. The phytochemical screeningtest of ethanol extract and partitions of leaves indicated the presence of flavonoids, terpenoids, saponins, phenols and steroids compounds. Nitrogenous compounds, characteristic of some species of this family, were not detected. Flavonoids were the predominant metabolite, with the highest concentrations on the partitions ethyl acetate and n-butanol. The antibacterial activity, antifungal and cytotoxicity of the essetial oil, ethanol extract and partitions were assyed by microdilution broth method (MBM), where the minimum inhibitory concentrations (MIC) were calculated. The ethanol extract and partitions did not inhibit growth against to Gram positive bacteria tested, with MIC less than 400 mg L-1. For the Gram negative bacteria tested, the hexane and hydroethanol partitios were more effective against F. nucleatum bacteria (MIC 100 ug mL-1). The ethanol extract showed antifungal activity with MIC of 31.2 mg L-1. Ethyl acetate and n-butanol partitions showed MIC 187.5 mg L-1 and 93.7 mg L-1, respectively, arousing interest for isolation studies. The antioxidant activity was evaluated by the DPPH free radical method. The ethanolic extract, ethyl acetate and n-butanol partitions were active, since they showed EC50 values (4.53 ug mL-1, 4.07 and 8.39 ug mL-1, respectively), values equivalent to the BHT (7.3 mg L-1). The analysis by HPLC-MS/MS of the most active fractions (ethyl acetate and n-butanol) identified phenolic compounds (flavonols and phenolic acids) which exert recognized biological activity. The GC-MS analysis of the essential oils from leaves collected in two periods studied (dry and wet), showed a small variation in the number of compounds. The major classes identified for the oil collected in the dry period were aliphatic alcohols (23,4%), terpenoids (18.7%), sterols (10.4%) and long-chain alkanes (9.2%) compounds. Terpenoids (26.8%) were the major class for the rain season. The major compounds (3Z) -hexenol, phytol and untriacontano are present in the two seasons but in different amounts (19.4%, 9.8% and 7.5% during the dry season, and 17.0 %, 14.9% and 15.3% in the rainy season, respectively). The essential oil from rainy season was not effective against to the oral bacteria Gram positive and Gram negative tested. However, showed significant antifungal activity with MIC 1000 mg L-1 against Candidas. Thus, the promising results with respect to biological assays of ethanolic extract and partitions from B. laevifolia contributed to the chemical and biological knowledge of the species B. laevifolia.
Resumo:
The general aim of this study was to evaluate the conical interface of pilar/implant. The specific aims were to evaluate the influence of hexagonal internal index in the microleakage and mechanical strength of Morse taper implants; the effect of axial loading on the deformation in cervical region of Morse taper implants of different diameters through strain gauge; the effect of axial loading in cervical deformation and sliding of abutment into the implant by tridimensional measurements; the integrity of conical interface before and after dynamic loading by microscopy and microleakage; and the stress distribution in tridimensional finite element models of Morse taper implants assembled with 2 pieces abutment. According to the obtained results, could be concluded that the diameter had influence in the cervical deformation of Morse taper implants; the presence of internal hexagonal index in the end of internal cone of implant didn´t influenced the bacterial microleakage under static loading neither reduced the mechanical strength of implants; one million cycles of vertical and off-center load had no negative influence in Morse taper implant integrity.