940 resultados para encoding flexibility
Resumo:
A genomic region containing the fatty acid biosynthetic (fab) genes was isolated from the sugarcane leaf-scald pathogen Xanthomonasalbilineans. The order and predicted products of fabG (beta -ketoacyl reductase), acpP (acyl carrier protein), fabF(ketoacyl synthase II) and downstream genes in X. albilineans are very similar to those in Escherichia coli, with one exception. Sequence analysis, confirmed by insertional knockout and specific substrate feeding experiments, shows that the position occupied by pabC (encoding aminodeoxychorismate lyase) in other bacteria is occupied instead by pabB (encoding aminodeoxychorismate synthase component I) in X. albilineans. Downstream of pabB, X. albilineans resumes the arrangement common to characterized Gram-negative bacteria, with three transcriptionally coupled genes, encoding an ORF340 protein of undefined function, thymidylate kinase and delta' subunit of DNA polymerase III holoenzyme (HolB). Different species may obtain a common advantage from coordinated regulation of the same biosynthetic pathways using different genes in this region. (C) 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Many species of stomatopod crustaceans have multiple spectral classes of photoreceptors in their retinas. Behavioral evidence also indicates that stomatopods are capable of discriminating objects by their spectral differences alone, Most animals use only two to four different types of photoreceptors in their color vision systems, typically with broad sensitivity functions, but the stomatopods apparently include eight or more narrowband photoreceptor classes for color recognition. It is also known that stomatopods use several colored body regions in social interactions. To examine why stomatopods may be so 'concerned' with color, we measured the absorption spectra of visual pigments and intrarhabdomal filters, and the reflectance spectra from different parts of the bodies of several individuals of the gonodactyloid stomatopod species, Gonodactylus smithii. We then applied a model of multiple dichromatic channels for color encoding to examine whether the finely tuned color vision was specifically co-evolved with their complex color signals. Although the eye design of stomatopods seems suitable for detecting color signals of their own, the detection of color signals from other animals, such as reef fishes, can be enhanced as well. Color vision in G. smithii is therefore not exclusively adapted to detect its own color signals, but the spectral tuning of some photoreceptors (e.g. midband Rows 2 and 3) enhances the contrast of certain color signals to a large enough degree to make co-evolution between color vision and these rather specific color signals likely. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Epilepsies affect at least 2% of the population at some time in life, and many forms have genetic determinants(1,2). We have found a mutation in a gene encoding a GABA, receptor subunit in a large family with epilepsy. The two main phenotypes were childhood absence epilepsy (CAE) and febrile seizures (FS), There is a recognized genetic: relationship between FS and CAE, yet the two syndromes have different ages of onset, and the physiology of absences and convulsions is distinct. This suggests the mutation has age-dependent effects on different neuronal networks that influence the expression of these clinically distinct, but genetically related, epilepsy phenotypes. We found that the mutation in GABRG2 (encoding the gamma2-subunit) abolished in vitro sensitivity to diazepam, raising the possibility that endozepines do in fact exist and have a physiological role in preventing seizures.
Resumo:
The Sm/Lsm proteins associate with small nuclear RNA to form the core of small nuclear ribonucleoproteins, required for processes as diverse as pre-mRNA splicing, mRNA degradation and telomere formation. The Lsm proteins from archaea are likely to represent the ancestral Sm/Lsm domain. Here, we present the crystal structure of the Lsm alpha protein from the thermophilic archaeon Methanobacterium thermoautrophicum at 2.0 Angstrom resolution. The Lsm alpha protein crystallizes as a heptameric ring comprised of seven identical subunits interacting via beta -strand pairing and hydrophobic interactions. The heptamer can be viewed as a propeller-like structure in which each blade consists of a seven-stranded antiparallel beta -sheet formed from neighbouring subunits. There are seven slots on the inner surface of the heptamer ring, each of which is lined by Asp, Asn and Arg residues that are highly conserved in the Sm/Lsm sequences. These conserved slots are likely to form the RNA-binding site. In archaea, the gene encoding Lsm alpha is located next to the L37e ribosomal protein gene in a putative operon, suggesting a role for the Lsm alpha complex in ribosome function or biogenesis. (C) 2001 Academic Press.
Resumo:
Nuclear magnetic resonance spectroscopy was used to investigate the conformations of the platypus venom C-type natriuretic peptide A (OvCNPa) in aqueous solutions and in solutions containing sodium dodecyl sulfate (SDS) micelles. The chemically synthesized OvCNPa showed a substantial decrease in flexibility in aqueous solution at 10 degreesC, allowing the observation of medium- and long-range nuclear Overhauser enhancement (NOE) connectivities. Three-dimensional structures calculated using these data showed flexible and reasonably well-defined regions, the locations of which were similar in the two solvents. In aqueous solution, the linear part that spans residues 3-14 was basically an extended conformation while the cyclic portion, defined by residues 23-39, contained a series of beta-turns. The overall shape of the cyclic portion was similar to that observed for an atrial natriuretic peptide (ANP) variant in aqueous solution. OvCNPa adopted a different conformation in SDS micelles wherein the N-terminal region, defined by residues 2-10, was more compact, characterised by turns and a helix, while the cyclic region had turns and an overall shape that was fundamentally different from those structures observed in aqueous solution. The hydrophobic cluster, situated at the centre of the ring of the structure in aqueous solution, was absent in the structure in the presence of SDS micelles. Thus, OvCNPa interacts with SDS micelles and can possibly form ion-channels in cell membranes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A group of transposons, named maT, with characteristics intermediate between mariner and Tc1 transposons, is described. Two defective genomic copies of MdmaT from the housefly Musca domestica, with 85% identity, were found flanking and imbedded in the MdalphaE7 esterase gene involved in organophosphate insecticide resistance. Two cDNA clones, with 99% identity to each other and 72%-89% identity to the genomic copies were also obtained, but both represented truncated versions of the putative open reading frame. A third incomplete genomic copy of MdmaT was also identified upstream of the putative M. domestica period gene. The MdmaT sequences showed high identity to the transposable element Bmmar1 from the silk-worm moth, Bombyx mori, and to previously unidentified sequences in the genome of Caenorhabditis elegans. A total of 16 copies of full-length maT sequences were identified in the C elegans genome, representing three variants of the transposon, with 34%-100% identity amongst them. Twelve of the copies, named CemaT1, were virtually identical, with eight of them encoding a putative full length, intact transposase. Secondary structure predictions and phylogenetic analyses confirm that maT elements belong to the mariner-Tc1 superfamily of transposons, but their intermediate sequence and predicted structural characteristics suggest that they belong to a unique clade, distinct from either mariner-like or Tc1-like elements.
Resumo:
Multipartite nucleic acid-containing virus-like particles, known as polydnaviruses, are special structures produced by female parasitoid wasps to deliver wasp components into the body of their host at oviposition. The particles confer protection for the developing parasitoid by passive and active means. Although several genes expressed from the circular DNA of these particles have been identified from various host-parasitoid systems, there is not much known about the structural proteins of these particles. Here we report on two genes encoding Cotesia rubecula particle proteins with similarities to molecular chaperones, calreticulin and heat-shock protein 70.
Resumo:
Polydnaviruses are essential for the survival of many Ichneumonoid endoparasitoids, providing active immune suppression of the host in which parasitoid larvae develop. The Cotesia rubecula bracovirus is unique among polydnaviruses in that only four major genes are detected in parasitized host ( Pieris rapae) tissues, and gene expression is transient. Here we describe a novel C. rubecula bracovirus gene (CrV3) encoding a lectin monomer composed of 159 amino acids, which has conserved residues consistent with invertebrate and mammalian C-type lectins. Bacterially expressed CrV3 agglutinated sheep red blood cells in a divalent ion-dependent but Ca2+-independent manner. Agglutination was inhibited by EDTA but not by biological concentrations of any saccharides tested. Two monomers of similar to14 and similar to17 kDa in size were identified on SDS-PAGE in parasitized P. rapae larvae. The 17-kDa monomer was found to be an N-glyscosylated form of the 14-kDa monomer. CrV3 is produced in infected hemocytes and fat body cells and subsequently secreted into hemolymph. We propose that CrV3 is a novel lectin, the first characterized from an invertebrate virus. CrV3 shows over 60% homology with hypothetical proteins isolated from polydnaviruses in two other Cotesia wasps, indicating that these proteins may also be C-type lectins and that a novel polydnavirus lectin family exists in Cotesia-associated bracoviruses. CrV3 is probably interacting with components in host hemolymph, resulting in suppression of the Pieris immune response. The high similarity of CrV3 with invertebrate lectins, as opposed to those from viruses, may indicate that some bracovirus functions were acquired from their hosts.
Resumo:
Background: Mutations in SCN1A, the gene encoding the alpha1 subunit of the sodium channel, have been found in severe myoclonic epilepsy of infancy (SMEI) and generalized epilepsy with febrile seizures plus (GEFS(+)). Mutations in SMEI include missense, nonsense, and frameshift mutations more commonly arising de novo in affected patients. This finding is difficult to reconcile with the family history of GEFS(+) in a significant proportion of patients with SMEI Infantile spasms (IS), or West syndrome, is a severe epileptic encephalopathy that is usually symptomatic. In some cases, no etiology is found and there is a family history of epilepsy. Method: The authors screened SCN1A in 24 patients with SMEI and 23 with IS. Results: Mutations were found in 8 of 24 (33%) SMEI patients, a frequency much lower than initial reports from Europe and Japan. One mutation near the carboxy terminus was identified in an IS patient. A family history of seizures was found in 17 of 24 patients with SMEI. Conclusions: The rate of SCN1A mutations in this cohort of SMEI patients suggests that other factors may be important in SMEI. Less severe mutations associated with GEFS(+) could interact with other loci to cause SMEI in cases with a family history of GEFS(+). This study extends the phenotypic heterogeneity of mutations in SCN1A to include IS.
Resumo:
Functional magnetic resonance imaging (FMRI) analysis methods can be quite generally divided into hypothesis-driven and data-driven approaches. The former are utilised in the majority of FMRI studies, where a specific haemodynamic response is modelled utilising knowledge of event timing during the scan, and is tested against the data using a t test or a correlation analysis. These approaches often lack the flexibility to account for variability in haemodynamic response across subjects and brain regions which is of specific interest in high-temporal resolution event-related studies. Current data-driven approaches attempt to identify components of interest in the data, but currently do not utilise any physiological information for the discrimination of these components. Here we present a hypothesis-driven approach that is an extension of Friman's maximum correlation modelling method (Neurolmage 16, 454-464, 2002) specifically focused on discriminating the temporal characteristics of event-related haemodynamic activity. Test analyses, on both simulated and real event-related FMRI data, will be presented.
Resumo:
In a recent thought-provoking paper, Ball and Sheridan [Ball, L., Sheridan, N., 2005. Does inflation targeting matter? In: Bernanke, B.S., Woodford, M. (Eds.), The Inflation-Targeting Debate, University of Chicago Press] show that the available evidence for a group of developed economies does not lend credence to the belief that adopting an inflation targeting regime (IT) was instrumental in bringing inflation and inflation volatility down. Here, we extend Ball and Sheridan`s analysis for a subset of 36 emerging market economies and find that, for them, the story is quite different. Compared to non-targeters, developing countries adopting the IT regime not only experienced greater drops in inflation, but also in growth volatility, thus corroborating the view that the regime`s ""constrained flexibility"" to deal with adverse shocks delivered concrete welfare gains. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.
Resumo:
This paper develops a multi-regional general equilibrium model for climate policy analysis based on the latest version of the MIT Emissions Prediction and Policy Analysis (EPPA) model. We develop two versions so that we can solve the model either as a fully inter-temporal optimization problem (forward-looking, perfect foresight) or recursively. The standard EPPA model on which these models are based is solved recursively, and it is necessary to simplify some aspects of it to make inter-temporal solution possible. The forward-looking capability allows one to better address economic and policy issues such as borrowing and banking of GHG allowances, efficiency implications of environmental tax recycling, endogenous depletion of fossil resources, international capital flows, and optimal emissions abatement paths among others. To evaluate the solution approaches, we benchmark each version to the same macroeconomic path, and then compare the behavior of the two versions under a climate policy that restricts greenhouse gas emissions. We find that the energy sector and CO(2) price behavior are similar in both versions (in the recursive version of the model we force the inter-temporal theoretical efficiency result that abatement through time should be allocated such that the CO(2) price rises at the interest rate.) The main difference that arises is that the macroeconomic costs are substantially lower in the forward-looking version of the model, since it allows consumption shifting as an additional avenue of adjustment to the policy. On the other hand, the simplifications required for solving the model as an optimization problem, such as dropping the full vintaging of the capital stock and fewer explicit technological options, likely have effects on the results. Moreover, inter-temporal optimization with perfect foresight poorly represents the real economy where agents face high levels of uncertainty that likely lead to higher costs than if they knew the future with certainty. We conclude that while the forward-looking model has value for some problems, the recursive model produces similar behavior in the energy sector and provides greater flexibility in the details of the system that can be represented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hexamerins and prophenoloxidases (PPOs) proteins are members of the arthropod-haemocyanin superfamily. In contrast to haemocyanin and PPO, hexamerins do not bind oxygen, but mainly play a role as storage proteins that supply amino acids for insect metamorphosis. We identified seven genes encoding hexamerins, three encoding PPOs, and one hexamerin pseudogene in the genome of the parasitoid wasp Nasonia vitripennis. A phylogenetic analysis of hexamerins and PPOs from this wasp and related proteins from other insect orders suggests an essentially order-specific radiation of hexamerins. Temporal and spatial transcriptional profiles of N. vitripennis hexamerins suggest that they have physiological functions other than metamorphosis, which are arguably coupled with its lifestyle.
Resumo:
Proteins stored in insect hemolymph may serve (is a source of amino acids and energy for metabolism, and development. The expression of the main storage proteins was assessed in bacterial-challenged honey bees using real-time (RT)-PCH and Western blot.. After ensuring that. the immune system had, been activated by measuring the ensuing expression (, the innate immune response genes, defensin-1 (def-1) and prophenoloxidase (pro PO), we verified the expression of four genes encoding storage proteins. The levels of vitellogenin (vg) mRNA and of the respective protein. were significantly lowered in bees injected with bacteria or water only (injury). An equivalent response was observed in orally-infected bees. The levels of apolipophorin II/I (apoLP-II/I) and hexamerin (hex 70a) mRNAs did not significantly change, but levels of Hex 70a protein subunit showed a substantial decay after bacterial challenge or injury. Infection also caused a strong reduction in the levels of apoLP-III transcripts. Our findings are consistent with a down-regulation, of the express and accumulation of storage proteins as a consequence of activation of the immune system, suggesting that this phenomenon. represents a strategy to redirect resources to combat injury or infection. (C) 2009 Wiley Periodicals, Inc.