978 resultados para electrosynthesis hydrotalcite pH-sensor structured catalystcatalytic partial oxidation
Resumo:
The possibility of using a graphite silicone-rubber composite electrode (GSR) in a differential pulse voltammetric(DPV) procedure for rutin (vitamin P) determination is described. Cyclic voltammograms of rutin presented a reversible pair of oxidation/reduction peaks respectively at 0.411 and 0.390 V (vs. SCE) at the GSR surface in Britton-Robinson(B-R) buffer solution pH 4.0. In DPV after optimization of conditions, an oxidation peak at 0.370 V (vs. SCE) was used to quantitative determination of rutin in B-R buffer solution pH 4.0. In this case a linear dynamic range of 5.0×10-8 to 50.0×10-8 mol L-1 was observed with a detection limit of 1.8×10-8 mol L-1 for the analyte. Recoveries from 94 to 113% were observed. The electrode surface was renewed by polishing after each determination, with a repeatability of 1.09 ± 0.06 µA (n = 10) peak current. Rutin was determined in a pharmaceutical formulation using the proposed electrode and the results agreed with those from an official method within 95% confidence level.
Resumo:
A modified method for the calculation of the normalized faradaic charge (q fN) is proposed. The method involves the simulation of an oxidation process, by cyclic voltammetry, by employing potentials in the oxygen evolution reaction region. The method is applicable to organic species whose oxidation is not manifested by a defined oxidation peak at conductive oxide electrodes. The variation of q fN for electrodes of nominal composition Ti/RuX Sn1-X O2 (x = 0.3, 0.2 and 0.1), Ti/Ir0.3Ti0.7O2 and Ti/Ru0.3Ti0.7O2 in the presence of various concentrations of formaldehyde was analyzed. It was observed that electrodes containing SnO2 are the most active for formaldehyde oxidation. Subsequently, in order to test the validity of the proposed model, galvanostatic electrolyses (40 mA cm-2) of two different formaldehyde concentrations (0.10 and 0.01 mol dm-3) were performed. The results are in agreement with the proposed model and indicate that this new method can be used to determine the relative activity of conductive oxide electrodes. In agreement with previous studies, it can be concluded that not only the nature of the electrode material, but also the organic species in solution and its concentration are important factors to be considered in the oxidation of organic compounds.
Resumo:
We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.
Resumo:
The electrochemical behavior of fluconazole showed an irreversible oxidation process, with the electrochemical - chemical mechanism being highly dependent on the electrode material. Adsorption of reagent at positive applied potential was observed at Pt electrode while preferential adsorption of the oxidation products was observed at Glassy Carbon surfaces. In pH below 7.0, the anodic current process was intensively decreased. At carbon paste electrode, the fluconazole oxidation current, recorded in phosphate buffer solution (pH 8.0), changed linearly with the fluconazole concentration, Ipa = 5.7×10-5 (mA) × 0.052 [Fluconazol] (μg mL-1), in the range of 48.0 to 250.0 μg mL-1. The detection limit obtained was 6.3 μg mL-1.
Resumo:
Colloidal particles have been used to template the electrosynthesis of several materials, such as semiconductors, metals and alloys. The method allows good control over the thickness of the resulting material by choosing the appropriate charge applied to the system, and it is able to produce high density deposited materials without shrinkage. These materials are a true model of the template structure and, due to the high surface areas obtained, are very promising for use in electrochemical applications. In the present work, the assembly of monodisperse polystyrene templates was conduced over gold, platinum and glassy carbon substrates in order to show the electrodeposition of an oxide, a conducting polymer and a hybrid inorganic-organic material with applications in the supercapacitor and sensor fields. The performances of the resulting nanostructured films have been compared with the analogue bulk material and the results achieved are depicted in this paper.
Resumo:
O presente trabalho objetivou avaliar o efeito do pH do meio de cultivo sobre alguns parâmetros de crescimento da Pfaffia glomerata (Spreng.) Pedersen cultivada in vitro, bem como checar se o crescimento dos explantes altera o pH do meio ao longo do período de cultivo. Foram testados quatro tratamentos constituídos de distintos valores de pH (3,7; 5,0; 6,0 e 7,5) do meio de cultivo. O pH do meio de cultivo foi ajustado antes da inclusão do agar (6g L-1 - Merck) e da autoclavagem. Como fonte de explantes foram utilizadas segmentos nodais de plantas previamente estabelecidas in vitro em meio MS. Dos nove aos 15 dias após a inoculação (DAI) dos segmentos nodais, verificou-se maior número de raízes em pH 6,0 e o menor no pH 7,5. Aos 35 DAI, o comprimento da maior brotação e o número total de segmentos nodais por planta foram maiores em torno de pH 6,0. Aos 35 DAI, observou-se menor crescimento em biomassa de raízes em pH 3,7. Já a parte aérea apresentou menor biomassa em pH 7,5. Aos 35 DAI, a produção de matéria fresca e seca total da plântula foi maior em pH próximo a 6,0. Concluiu-se que valores de pH do meio de cultivo próximos a 6,0, ajustados antes da autoclavagem, são ideais para o crescimento da P. glomerata cultivada in vitro. Também se verificou que o crescimento da plântula modificou significativamente o pH do meio de cultivo.
Resumo:
A comunidade fitoplanctônica pode funcionar como sensor das variações do ambiente aquático respondendo rapidamente as essas alterações. Em sistemas aquáticos continentais é comum a coexistência de espécies que possuem as mesmas necessidades ecológicas e apresentam as mesmas tolerâncias ambientais, tais grupos de espécies fitoplanctônicas são denominados grupos funcionais. O uso de grupos funcionais fitoplanctônicos para avaliar tais alterações tem se mostrado muito útil e eficaz. Assim, o objetivo do estudo foi avaliar a ocorrência de grupos funcionais fitoplanctônicos em dois reservatórios (Billings e Guarapiranga) que suprem de água milhões de pessoas na Região Metropolitana de São Paulo, Sudeste do Brasil. As amostras foram coletadas mensalmente na superfície da coluna d'água e foram analisadas as variáveis físicas, químicas e biológicas (análises qualitativa e quantitativa do fitoplâncton). Os maiores valores de biovolume (mm3.L-1) das espécies descritoras e grupos funcionais foram representados por Anabaena circinalis (H1), Microcystis aeruginosa (LM/M) e Mougeotia sp. (T) no Reservatório Guarapiranga e por Cylindrospermopsis raciborskii (SN), Microcystis aeruginosa e M. panniformis (LM/M), Planktothrix agardhii e P. cf. clathrata (S1) no Reservatório Billings. Os principais fatores ambientais que interferiram na dinâmica do fitoplâncton foram: temperatura da água, zona eufótica, turbidez, condutividade, pH, oxigênio dissolvido, nitrato e fósforo total
Resumo:
This study aimed to compare maximal fat oxidation rate parameters between moderate-and low-performance runners. Eighteen runners performed an incremental treadmill test to estimate individual maximal fat oxidation rate (Fat(max)) based on gases measures and a 10,000-m run on a track. The subjects were then divided into a low and moderate performance group using two different criteria: 10,000-m time and VO(2)max values. When groups were divided using 10,000-m time, there was no significant difference in Fat(max) (0.41 +/- 0.16 and 0.27 +/- 0.12 g.min(-1), p = 0.07) or in the exercise intensity that elicited Fat(max) (59.9 +/- 16.5 and 68.7 +/- 10.3 % (V) over dotO(2max), p = 0.23) between the moderate and low performance groups, respectively (p > 0.05). When groups were divided using VO(2max) values, Fat(max) was significantly lower in the low VO(2max) group than in the high VO(2max) group (0.29 +/- 0.10 and 0.47 +/- 0.17 g.min(-1), respectively, p < 0.05) but the intensity that elicited Fat(max) did not differ between groups (64.4 +/- 14.9 and 61.6 +/- 15.4 % VO(2max)). Fat(max) or % VO(2max) that elicited Fat(max) was not associated with 10,000 m time. The only variable associated with 10,000-m running performance was % VO(2max) used during the run (p < 0.01). In conclusion, the criteria used for the division of groups according to training status might influence the identification of differences in Fat(max) or in the intensity that elicits Fat(max).
Resumo:
Metal oxide-semiconductor capacitors with TiO(x) deposited with different O(2) partial pressures (30%, 35%, and 40%) and annealed at 550, 750, and 1000 degrees C were fabricated and characterized. Fourier transform infrared, x-ray near edge spectroscopy, and elipsometry measurements were performed to characterize the TiO(x) films. TiO(x)N(y) films were also obtained by adding nitrogen to the gaseous mixture and physical results were presented. Capacitance-voltage (1 MHz) and current-voltage measurements were utilized to obtain the effective dielectric constant, effective oxide thickness, leakage current density, and interface quality. The results show that the obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density (for V(G)=-1 V, for some structures as low as 1 nA/cm(2), acceptable for complementary metal oxide semiconductor circuits fabrication), indicating that this material is a viable, in terms of leakage current density, highk substitute for current ultrathin dielectric layers. (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3043537]
Resumo:
Purpose: Use of lipid nanoemulsions as carriers of drugs for therapeutic or diagnostic purposes has been increasingly studied. Here, it was tested whether modifications of core particle constitution could affect the characteristics and biologic properties of lipid nanoemulsions. Methods: Three nanoemulsions were prepared using cholesteryl oleate, cholesteryl stearate, or cholesteryl linoleate as main core constituents. Particle size, stability, pH, peroxidation of the nanoemulsions, and cell survival and uptake by different cell lines were evaluated. Results: It was shown that cholesteryl stearate nanoemulsions had the greatest particle size and all three nanoemulsions were stable during the 237-day observation period. The pH of the three nanoemulsion preparations tended to decrease over time, but the decrease in pH of cholesteryl stearate was smaller than that of cholesteryl oleate and cholesteryl linoleate. Lipoperoxidation was greater in cholesteryl linoleate than in cholesteryl oleate and cholesteryl stearate. After four hours' incubation of human umbilical vein endothelial cells (HUVEC) with nanoemulsions, peroxidation was minimal in the presence of cholesteryl oleate and more pronounced with cholesteryl linoleate and cholesteryl stearate. In contrast, macrophage incubates showed the highest peroxidation rates with cholesteryl oleate. Cholesteryl linoleate induced the highest cell peroxidation rates, except in macrophages. Uptake of cholesteryl oleate nanoemulsion by HUVEC and fibroblasts was greater than that of cholesteryl linoleate and cholesteryl stearate. Uptake of the three nanoemulsions by monocytes was equal. Uptake of cholesteryl oleate and cholesteryl linoleate by macrophages was negligible, but macrophage uptake of cholesteryl stearate was higher. In H292 tumor cells, cholesteryl oleate showed the highest uptakes. HUVEC showed higher survival rates when incubated with cholesteryl stearate and smaller survival with cholesteryl linoleate. H292 survival was greater with cholesteryl stearate. Conclusion: Although all three nanoemulsion types were stable for a long period, considerable differences were observed in size, oxidation status, and cell survival and nanoemulsion uptake in all tested cell lines. Those differences may be helpful in protocol planning and interpretation of data from experiments with lipid nanoemulsions.
Resumo:
The photo-Fenton process (Fe(2+)/Fe(3+), H(2)O(2), UV light) is one of the most efficient and advanced oxidation processes for the mineralization of the organic pollutants of industrial effluents and wastewater. The overall rate of the photo-Fenton process is controlled by the rate of the photolytic step that converts Fe(3+) back to Fe(2+). In this paper, the effect of sulfate or chloride ions on the net yield of Fe(2+) during the photolysis of Fe(3+) has been investigated in aqueous solution at pH 3.0 and 1.0 in the absence of hydrogen peroxide. A kinetic model based on the principal reactions that occur in the system fits the data for formation of Fe(2+) satisfactorily. Both experimental data and model prediction show that the availability of Fe(2+) produced by photolysis of Fe(3+) is inhibited much more in the presence of sulfate ion than in the presence of chloride ion as a function of the irradiation time at pH 3.0.
Resumo:
In this paper we study the existence and regularity of mild solutions for a class of abstract partial neutral integro-differential equations with unbounded delay.
Resumo:
Background: The establishment of an in vitro production (IVP) of embryo in swine allows the generation of embryos with the same quality as in vivo produced embryos with less costs and time. In order to achieve successful fertilization under normal circumstances in vivo, mammalian spermatozoa must first undergo capacitation and then acrosome reaction. The purpose of this study was compared the efficacious of IP/CFDA fluorescence and Coomassie Blue G (CB) staining to detect capacitated sperm cells in refrigerated and fresh semen. Morever, it was investigated the efficacious of caffeine and chondroitin sulphate to promote in vitro sperm capacitation and in vitro embryo produced (IVP) of swine embryos. Materials, Methods & Results: A sperm-rich fraction from ejaculate was obtained using the gloved-hand method and the gel-free fraction was separated using sterile gauze. The semen was diluted in BTS at a final concentration of 1.5 x 10(8) cells/mL. The sperm suspension was incubated for 2 h at 25 degrees C, refrigerated and maintained for 1 h at 15-18 degrees C (refrigerated group) or used immediately (fresh group). Sperm capacitation was assessed by IP/CFDA fluorescence and CB staining for both fresh and refrigerated semen. For PI/CFDA evaluation, a final solution containing 1.7 mM formaldehyde, 7.3 mM PI and 20 mM CFDA in 950 mu L saline was prepared. In the dark, 40 mu L PI/CFDA final solution was added to 10 mu L semen and after 8 min, slides were analyzed on epifluorescence microscopy. For CB evaluation, sperm cells were fixed in 4% paraformaldehyde for 10 min and centrifuged twice at 320 x g in ammonium acetate pH 9 for 8 min. A smear was made and stained with 2.75 mg/mL CB in solution containing 12.5% methanol, 25% glacial acetic acid and 62.5% water, for 2 min. The smear was washed in running water, air dried and sealed with Permount (R), diluted 2:1 in xilol to avoid staining oxidation. Our results showed that refrigeration did not affect sperm capacitation and comparing staining methods, the PI/CFDA combination was more efficient to detect capacitated sperm, when compared to CB staining. In experiment 2, we evaluated the effect of different incubation time (1 - 5 h) with chondroitin sulfate and caffeine on sperm capacitation. For in vitro fertilization, oocytes were obtained from slaughterhouse ovaries. Oocytes with a thick and intact cumulus oophurus layer and cytoplasm with homogenous granules were selected for in vitro maturation for 44 h. According to the results of experiment 2, it was used for in vitro fertilization refrigerated semen was capacitated with 50 mu g/mL chondroitin sulfate for 2 h or capacitated with 5 mu g/mL caffeine for 3 h. Six hours after insemination, cumulus oophorus cells were mechanically removed and oocytes were washed and incubated in microdrops of culture medium. Embryo development after fertilization with sperm capacitated with caffeine or chondroitin sulfate was evaluated on days 3, 5 and 7 of culture. No differences were observed in days 3 or 5 of in vitro culture. However, it was observed an increase on blastocyst rate on Day 7 of culture when caffeine was used as the capacitor agent. Discussion: Molecular basis of sperm capacitation is still poor understood. Sperm capacitation can occur in vitro spontaneously in defined media without addition of biological fluids. We observed that sperm capacitation increased as incubation period enlarged and it was observed using Coomassie blue G and PI/CFDA for fresh semen and for refrigerated semen. It can be concluded that the cooling of semen did not change their pattern of sperm capacitation and this is best assessed by IP/CFDA than by CB. In addition to the use of caffeine in sperm capacitation produces more blastocysts than the chondroitin sulfate after in vitro fertilization.