908 resultados para egg-capsule deposition
Resumo:
A 37 m deep ice core representing 1957–2009 and snow from 2009 to 2010 were collected on the Lomonosovfonna glacier, Svalbard (78.82° N; 17.43° E) and analyzed for 209 polychlorinated biphenyl (PCB) congeners using high-resolution mass spectrometry. Congener profiles in all samples showed the prevalence of tetra- and pentachlorobiphenyls, dominated in all samples by PCB-44, PCB-52, PCB-70 + PCB-74, PCB-87 + PCB-97, PCB-95, PCB-99, PCB-101, and PCB-110. The ∑PCB flux varied over time, but the peak flux, 19 pg cm–2 year–1 from 1957 to 1966, recurred in 1974–1983, 1998–2009, and 2009–2010. The minimum was 5.75 pg cm–2 year–1 in 1989–1998, following a 15 year decline. Peak ∑PCB fluxes here are lower than measured in the Canadian Arctic. The analysis of all 209 congeners revealed that PCB-11 (3,3′-dichlorobiphenyl) was present in all samples, representing 0.9–4.5% of ∑PCB. PCB-11 was not produced in a commercial PCB product, and its source to the Arctic has not been well-characterized; however, our results confirm that the sources to Lomonosovfonna have been active since 1957. The higher fluxes of ∑PCB correspond to periods when average 5 day air mass back trajectories have a frequency of 8–10% and reach 60° N or beyond over northern Europe and western Russia or the North Sea into the U.K
Resumo:
BACKGROUND Epidemiological studies show that elevated levels of particulate matter in ambient air are highly correlated with respiratory and cardiovascular diseases. Atmospheric particles originate from a large number of sources and have a highly complex and variable composition. An assessment of their potential health risks and the identification of the most toxic particle sources would require a large number of investigations. Due to ethical and economic reasons, it is desirable to reduce the number of in vivo studies and to develop suitable in vitro systems for the investigation of cell-particle interactions. METHODS We present the design of a new particle deposition chamber in which aerosol particles are deposited onto cell cultures out of a continuous air flow. The chamber allows for a simultaneous exposure of 12 cell cultures. RESULTS Physiological conditions within the deposition chamber can be sustained constantly at 36-37°C and 90-95% relative humidity. Particle deposition within the chamber and especially on the cell cultures was determined in detail, showing that during a deposition time of 2 hr 8.4% (24% relative standard deviation) of particles with a mean diameter of 50 nm [mass median diameter of 100 nm (geometric standard deviation 1.7)] are deposited on the cell cultures, which is equal to 24-34% of all charged particles. The average well-to-well variability of particles deposited simultaneously in the 12 cell cultures during an experiment is 15.6% (24.7% relative standard deviation). CONCLUSIONS This particle deposition chamber is a new in vitro system to investigate realistic cell-particle interactions at physiological conditions, minimizing stress on the cell cultures other than from deposited particles. A detailed knowledge of particle deposition characteristics on the cell cultures allows evaluating reliable dose-response relationships. The compact and portable design of the deposition chamber allows for measurements at any particle sources of interest.
Resumo:
Chelonus inanitus (Braconidae) is a solitary egg-larval parasitoid which lays its eggs into eggs of Spodoptera littoralis (Noctuidae); the parasitoid larva then develops in the haemocoel of the host larva. Host embryonic development lasts approx. 3.5 days while parasitoid embryonic development lasts approx. 16 h. All stages of host eggs can be successfully parasitized, and we show here that either the parasitoid larva or the wasp assures that the larva eventually is located in the host's haemocoel. (1) When freshly laid eggs, up to almost 1-day-old, are parasitized, the parasitoid hatches while still in the yolk and enters the host either after waiting or immediately through the dorsal opening. (2) When 1-2-day-old eggs are parasitized, the host embryo has accomplished final dorsal closure and is covered by an embryonic cuticle when the parasitoid hatches; in this case the parasitoid larva bores with its moving abdominal tip into the host. (3) When 2.5-3.5-day-old eggs are parasitized, the wasp oviposits directly into the haemocoel of the host embryo; from day 2 to 2.5 the embryo is still very small and the wasps, after probing, often restrain from oviposition for a few hours.
Resumo:
The polysaccharide capsule and pneumolysin toxin are major virulence factors of the human bacterial pathogen Streptococcus pneumoniae. Colonization of the nasopharynx is asymptomatic but invasion of the lungs can result in invasive pneumonia. Here we show that the capsule suppresses the release of the pro-inflammatory cytokines CXCL8 (IL-8) and IL-6 from the human pharyngeal epithelial cell line Detroit 562. Release of both cytokines was much less from human bronchial epithelial cells (iHBEC) but levels were also affected by capsule. Pneumolysin stimulates CXCL8 release from both cell lines. Suppression of CXCL8 homologue (CXCL2/MIP-2) release by the capsule was also observed in vivo during intranasal colonization of mice but was only discernable in the absence of pneumolysin. When pneumococci were administered intranasally to mice in a model of long term, stable nasopharyngeal carriage, encapsulated S. pneumoniae remained in the nasopharynx whereas the nonencapsulated pneumococci disseminated into the lungs. Pneumococcal capsule plays a role not only in protection from phagocytosis but also in modulation of the pro-inflammatory immune response in the respiratory tract.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are a proxy for climate- and human-related historical fire activity which has rarely been used beyond 1800 AD. We explored the concentration and composition patterns of PAHs together with other proxies (charcoal, C, N, S, δ13C, δ15N, and δ34S) in a sediment core of Holzmaar as indicators of variations in climate and anthropogenic activity over the past 2600 years. The concentrations of pyrogenic PAHs remained low (< 500 ng g− 1) from the pre-Roman Iron Age (600 BC) until the first significant increases to ca. 1000–1800 ng g− 1 between 1700 and 1750 AD related to regional iron production. The highest increases in pyrogenic PAH concentrations occurred with industrialization peaking in the 1960s. PAH concentrations in most recent sediments decreased to pre-industrial levels because of emission control measures and the switch from coal to oil and gas as major fuel sources. Fluxes of PAHs (mg km− 2 yr− 1) increased in the order Migration Period and Early Middle Ages < pre-Roman Iron Ages < Roman era < High Middle Ages and Renaissance < pre-industrial modern period < industrial modern period. The changes of PAHs fluxes in pre-industrial times parallel known changes in local, regional and continental anthropogenic activity and climatic variations or their interactions across these historical periods. Perylene, a mainly biologically produced compound, was the dominant PAH in pre-industrial times. The Migration Period and the Early Middle Ages witnessed the most profound and simultaneous changes to the sedimentary organic matter properties in the past 2600 years including the lowest PAH fluxes because of reduced human activity and more negative δ13C and δ15N values probably in response to colder and wetter conditions.
Resumo:
Major episodic acidifications were observed on several occasions in first-order brooks at Acadia National Park, Mount Desert Island, Maine. Short-term declines of up to 2 pH units and 130-mu-eq L-1 acid-neutralizing capacity were caused by HCl from soil solutions, rather than by H2SO4 or HNO3 from precipitation, because (1) SO4 concentrations were constant or decreased during the pH depression, (2) Cl concentrations were greatest at the time of lowest pH, and (3) Na:Cl ratios decreased from values much greater than those in precipitation (a result of chemical weathering), to values equal to or less than those in precipitation. Dilution, increases in NO3 concentrations, or increased export or organic acidity from soils were insufficient to cause the observed decreases in pH. These data represent surface water acidifications due primarily to an ion exchange "salt effect" of Na+ for H+ in soil solution, and secondarily to dilution, neither of which is a consequence of acidic deposition. The requisite conditions for a major episodic salt effect acidification include acidic soils, and either an especially salt-laden wet precipitation event, or a period of accumulation of marine salts from dry deposition, followed by wet inputs.
Resumo:
The causes of the glacial cycle remain unknown, although the primary driver is changes in atmospheric CO(2), likely controlled by the biological pump and biogeochemical cycles. The two most important regions of the ocean for exchange of CO(2) with the atmosphere are the equatorial Pacific and the Southern Ocean ( SO), the former a net source and the latter a net sink under present conditions. The equatorial Pacific has been shown to be a Si(OH)(4)-limited ecosystem, a consequence of the low source Si(OH)(4) concentrations in upwelled water that has its origin in the SO. This teleconnection for nutrients between the two regions suggests an oscillatory relationship that may influence or control glacial cycles. Opal mass accumulation rate (MAR) data and delta(15)N measurements in equatorial cores are interpreted with predictions from a one- dimensional Si(OH)(4)-limited ecosystem model (CoSINE) for the equatorial Pacific. The results suggest that equatorial Pacific surface CO(2) processes are in opposite phase to that of the global atmosphere, providing a negative feedback to the glacial cycle. This negative feedback is implemented through the effect of the SO on the equatorial Si(OH)(4) supply. An alternative hypothesis, that the whole ocean becomes Si(OH)(4) poor during cooling periods, is suggested by low opal MAR in cores from both equatorial and Antarctic regions, perhaps as a result of low river input. terminations in this scenario would result from blooms of coccolithophorids triggered by low Si(OH)(4) concentrations.
Resumo:
Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant's signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores. © 2011 Springer-Verlag.
Resumo:
Chapter 1 gives an overview about Streptococcus pneumoniae, its role as a human pathogen and its virulence factors. Additionally, biofilm development and its relevance in clinics are introduced, and the innate immune response to pneumococcus as well as bacterial-viral interactions in the upper respiratory tract are also discussed. Chapter 2 emphasizes the three main topics of this thesis: the role of capsule and pneumolysin in the immune response in the respiratory tract, biofilm formation of S. pneumoniae serotypes and commensal streptococci in vitro, and host innate immune responses to RSV and S. pneumoniae during in vitro co-infections. Aims and hypotheses are provided here. Chapter 3 is divided into two parts: First, the release of the pro-inflammatory cytokines CXCL8 and IL-6 from the human pharyngeal epithelial cell line Detroit 562 and from human bronchial epithelial cells (iHBEC) is described in response to S. pneumoniae. Capsule was shown to suppress the release of both cytokines in both cell lines tested, but release was much less from iHBEC cells. During intranasal colonization of mice, suppression of CXCL8 release by the capsule was also observed in vivo, but the effect was only measured in the absence of pneumolysin. Long term, stable nasopharyngeal carriage in a mouse model resulted in the dissemination of nonencapsulated pneumococci into the lungs, whereas encapsulated strains remained in the nasopharynx. The S. pneumoniae capsule thus plays a role in modulation of the pro-inflammatory immune response in the respiratory tract. Second, results on immunological cells and immune regulation in a long term, stable nasopharyngeal carriage mouse model are presented. Mice were infected with encapsulated or nonencapsulated pneumococcal strains, and after 1, 3, 8 and 15 days, were sacrificed to evaluate the numbers of CD45+ cells, neutrophils, macrophages, FoxP3+ regulatory T-cells and CD3+ T-cells in the nasal mucosa as well as the amount of secreted IL-10 in the nasopharynx. Nasopharyngeal colonization which is effectively silent resulted in the stimulation of FoxP3+ regulatory T-cells and IL-10 release associated with immune homeostasis, whereas lung infiltration was required to increase the number of neutrophils and macrophages resulting in a stronger innate immune response in the nasal mucosa. Chapter 4 contains results of mono- and co-stimulation using RSV and pneumococci or pneumococcal virulence factors on the human bronchial epithelial cell line BEAS-2B. An increase in CXCL8 and IL-6 levels was measured for mixed stimulations of RSV and pneumococcus when encapsulated bacteria were used. Increasing pneumolysin concentrations resulted in enhanced CXCL8 levels. Priming of bronchial epithelial cells with RSV opens the door for more severe pneumococcal infections. Chapter 5 is composed of two parts: The first part describes initial biofilm formation of serotypes 6B and 7F in a static model in vitro. Biofilms of both serotypes contained SCVs, but only serotype 6B increased in SCV formation between 16 and 65h of incubation. SCV stability was tested by passaging clones in complex medium, where SCV production is not associated with advantages in growth. Serotype 6B lost the SCV phenotype indicating a fast adaptation to a changing nutritional environment. Limitations of our in vitro model are discussed. The second part is about initial biofilm formation of mixed culture growth of S. pneumoniae with commensal streptococci. Competition dominates this process. S. oralis and pneumococcus compete for nutrients, whereas mixed species growth of S. mitis or S. pseudopneumoniae with S. pneumoniae is mainly influenced by other factors. In Chapter 6 the findings of chapters 3, 4 and 5 are discussed and an outlook for further studies is provided. Chapters 7, 8, 9, 10 and 11 contain the references, the acknowledgements, the curriculum vitae, the appendix and the declaration of originality.
Resumo:
In previous work, Alpine glaciers have been identified as a secondary source of persistent organic pollutants (POPs). However, detailed understanding of the processes organic chemicals undergo in a glacial system was missing. Here, we present results from a chemical fate model describing deposition and incorporation of polychlorinated biphenyls (PCBs) into an Alpine glacier (Fiescherhorn, Switzerland) and an Arctic glacier (Lomonosovfonna, Norway). To understand PCB fate and dynamics, we investigate the interaction of deposition, sorption to ice and particles in the atmosphere and within the glacier, revolatilization, diffusion and degradation, and discuss the effects of these processes on the fate of individual PCB congeners. The model is able to reproduce measured absolute concentrations in the two glaciers for most PCB congeners. While the model generally predicts concentration profiles peaking in the 1970s, in the measurements, this behavior can only be seen for higher-chlorinated PCB congeners on Fiescherhorn glacier. We suspect seasonal melt processes are disturbing the concentration profiles of the lower-chlorinated PCB congeners. While a lower-chlorinated PCB congener is mainly deposited by dry deposition and almost completely revolatilized after deposition, a higher-chlorinated PCB congener is predominantly transferred to the glacier surface by wet deposition and then is incorporated into the glacier ice. The incorporated amounts of PCBs are higher on the Alpine glacier than on the Arctic glacier due to the higher precipitation rate and aerosol particle concentration on the former. Future studies should include the effects of seasonal melt processes, calculate the quantities of PCBs incorporated into the entire glacier surface, and estimate the quantity of chemicals released from glaciers to determine the importance of glaciers as a secondary source of organic chemicals to remote aquatic ecosystems.
Resumo:
Intravenous immunoglobulin (IVIG) is the first line treatment for Guillain–Barré syndrome and multifocal motor neuropathy, which are caused by anti-ganglioside antibody-mediated complement-dependent cytotoxicity. IVIG has many potential mechanisms of action, and sialylation of the IgG Fc portion reportedly has an anti-inflammatory effect in antibody-dependent cell-mediated cytotoxicity models. We investigated the effects of different IVIG glycoforms on the inhibition of antibody-mediated complement-dependent cytotoxicity. Deglycosylated, degalactosylated, galactosylated and sialylated IgG were prepared from IVIG following treatment with glycosidases and glycosyltransferases. Sera from patients with Guillain–Barré syndrome, Miller Fisher syndrome and multifocal motor neuropathy associated with anti-ganglioside antibodies were used. Inhibition of complement deposition subsequent to IgG or IgM autoantibody binding to ganglioside, GM1 or GQ1b was assessed on microtiter plates. Sialylated and galactosylated IVIGs more effectively inhibited C3 deposition than original IVIG or enzyme-treated IVIGs (agalactosylated and deglycosylated IVIGs). Therefore, sialylated and galactosylated IVIGs may be more effective than conventional IVIG in the treatment of complement-dependent autoimmune diseases.
Resumo:
OBJECTIVES The intensity of post-egg retrieval pain is underestimated, with few studies examining post-procedural pain and predictors to identify women at risk for severe pain. We evaluated the influence of pre-procedural hormonal levels, ovarian factors, as well as mechanical temporal summation (mTS) as predictors for post-egg retrieval pain in women undergoing in vitro fertilization (IVF). METHODS Eighteen women scheduled for ultrasound-guided egg retrieval under standardized anesthesia and post-procedural analgesia were enrolled. Pre-procedural mTS, questionnaires, clinical data related to anesthesia and the procedure itself, post-procedural pain scores and pain medication for breakthrough pain were recorded. Statistical analysis included Pearson product moment correlations, Mann-Whitney U tests and multiple linear regressions. RESULTS Average peak post-egg retrieval pain during the first 24 hours was 5.0±1.6 on an NRS scale (0=no pain, 10=worst pain imaginable). Peak post-egg retrieval pain was correlated with basal antimullerian hormone (AMH) (r=0.549, P=0.018), pre-procedural peak estradiol (r=0.582, P=0.011), total number of follicles (r=0.517, P=0.028) and number of retrieved eggs (r=0.510, P=0.031). Ovarian hyperstimulation syndrome (OHSS) (n=4) was associated with higher basal AMH (P=0.004), higher peak pain scores (P=0.049), but not with peak estradiol (P=0.13). The mTS did not correlate with peak post-procedural pain (r=0.266, P=0.286), or peak estradiol level (r=0.090, P=0.899). DISCUSSION Peak post-egg retrieval pain intensity was higher than anticipated. Our results suggest that post-egg retrieval pain can be predicted by baseline AMH, high peak estradiol, and OHSS. Further studies to evaluate intra- and post-procedural pain in this population are needed, as well as clinical trials to assess post-procedural analgesia in women presenting with high hormonal levels.