824 resultados para early detection
Resumo:
Le mouvement de la marche est un processus essentiel de l'activité humaine et aussi le résultat de nombreuses interactions collaboratives entre les systèmes neurologiques, articulaires et musculo-squelettiques fonctionnant ensemble efficacement. Ceci explique pourquoi une analyse de la marche est aujourd'hui de plus en plus utilisée pour le diagnostic (et aussi la prévention) de différents types de maladies (neurologiques, musculaires, orthopédique, etc.). Ce rapport présente une nouvelle méthode pour visualiser rapidement les différentes parties du corps humain liées à une possible asymétrie (temporellement invariante par translation) existant dans la démarche d'un patient pour une possible utilisation clinique quotidienne. L'objectif est de fournir une méthode à la fois facile et peu dispendieuse permettant la mesure et l'affichage visuel, d'une manière intuitive et perceptive, des différentes parties asymétriques d'une démarche. La méthode proposée repose sur l'utilisation d'un capteur de profondeur peu dispendieux (la Kinect) qui est très bien adaptée pour un diagnostique rapide effectué dans de petites salles médicales car ce capteur est d'une part facile à installer et ne nécessitant aucun marqueur. L'algorithme que nous allons présenter est basé sur le fait que la marche saine possède des propriétés de symétrie (relativement à une invariance temporelle) dans le plan coronal.
Resumo:
A method for computer- aided diagnosis of micro calcification clusters in mammograms images presented . Micro calcification clus.eni which are an early sign of bread cancer appear as isolated bright spots in mammograms. Therefore they correspond to local maxima of the image. The local maxima of the image is lint detected and they are ranked according to it higher-order statistical test performed over the sub band domain data
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
Cancer treatment is most effective when it is detected early and the progress in treatment will be closely related to the ability to reduce the proportion of misses in the cancer detection task. The effectiveness of algorithms for detecting cancers can be greatly increased if these algorithms work synergistically with those for characterizing normal mammograms. This research work combines computerized image analysis techniques and neural networks to separate out some fraction of the normal mammograms with extremely high reliability, based on normal tissue identification and removal. The presence of clustered microcalcifications is one of the most important and sometimes the only sign of cancer on a mammogram. 60% to 70% of non-palpable breast carcinoma demonstrates microcalcifications on mammograms [44], [45], [46].WT based techniques are applied on the remaining mammograms, those are obviously abnormal, to detect possible microcalcifications. The goal of this work is to improve the detection performance and throughput of screening-mammography, thus providing a ‘second opinion ‘ to the radiologists. The state-of- the- art DWT computation algorithms are not suitable for practical applications with memory and delay constraints, as it is not a block transfonn. Hence in this work, the development of a Block DWT (BDWT) computational structure having low processing memory requirement has also been taken up.
Resumo:
The presence of microcalcifications in mammograms can be considered as an early indication of breast cancer. A fastfractal block coding method to model the mammograms fordetecting the presence of microcalcifications is presented in this paper. The conventional fractal image coding method takes enormous amount of time during the fractal block encoding.procedure. In the proposed method, the image is divided intoshade and non shade blocks based on the dynamic range, andonly non shade blocks are encoded using the fractal encodingtechnique. Since the number of image blocks is considerablyreduced in the matching domain search pool, a saving of97.996% of the encoding time is obtained as compared to theconventional fractal coding method, for modeling mammograms.The above developed mammograms are used for detectingmicrocalcifications and a diagnostic efficiency of 85.7% isobtained for the 28 mammograms used.
Resumo:
In this paper, a novel fast method for modeling mammograms by deterministic fractal coding approach to detect the presence of microcalcifications, which are early signs of breast cancer, is presented. The modeled mammogram obtained using fractal encoding method is visually similar to the original image containing microcalcifications, and therefore, when it is taken out from the original mammogram, the presence of microcalcifications can be enhanced. The limitation of fractal image modeling is the tremendous time required for encoding. In the present work, instead of searching for a matching domain in the entire domain pool of the image, three methods based on mean and variance, dynamic range of the image blocks, and mass center features are used. This reduced the encoding time by a factor of 3, 89, and 13, respectively, in the three methods with respect to the conventional fractal image coding method with quad tree partitioning. The mammograms obtained from The Mammographic Image Analysis Society database (ground truth available) gave a total detection score of 87.6%, 87.6%, 90.5%, and 87.6%, for the conventional and the proposed three methods, respectively.
Resumo:
The atmospheric composition of the central North Atlantic region has been sampled using the FAAM BAe146 instrumented aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign, part of the wider International Consortium for Atmospheric Research on Transport and Transformation (ICARTT). This paper presents an overview of the ITOP campaign. Between late July and early August 2004, twelve flights comprising 72 hours of measurement were made in a region from approximately 20 to 40°W and 33 to 47°N centered on Faial Island, Azores, ranging in altitude from 50 to 9000 m. The vertical profiles of O3 and CO are consistent with previous observations made in this region during 1997 and our knowledge of the seasonal cycles within the region. A cluster analysis technique is used to partition the data set into air mass types with distinct chemical signatures. Six clusters provide a suitable balance between cluster generality and specificity. The clusters are labeled as biomass burning, low level outflow, upper level outflow, moist lower troposphere, marine and upper troposphere. During this summer, boreal forest fire emissions from Alaska and northern Canada were found to provide a major perturbation of tropospheric composition in CO, PAN, organic compounds and aerosol. Anthropogenic influenced air from the continental boundary layer of the USA was clearly observed running above the marine boundary layer right across the mid-Atlantic, retaining high pollution levels in VOCs and sulfate aerosol. Upper level outflow events were found to have far lower sulfate aerosol, resulting from washout on ascent, but much higher PAN associated with the colder temperatures. Lagrangian links with flights of other aircraft over the USA and Europe show that such signatures are maintained many days downwind of emission regions. Some other features of the data set are highlighted, including the strong perturbations to many VOCs and OVOCs in this remote region.
Resumo:
Objectives: Our objective was to test the performance of CA125 in classifying serum samples from a cohort of malignant and benign ovarian cancers and age-matched healthy controls and to assess whether combining information from matrix-assisted laser desorption/ionization (MALDI) time-of-flight profiling could improve diagnostic performance. Materials and Methods: Serum samples from women with ovarian neoplasms and healthy volunteers were subjected to CA125 assay and MALDI time-of-flight mass spectrometry (MS) profiling. Models were built from training data sets using discriminatory MALDI MS peaks in combination with CA125 values and tested their ability to classify blinded test samples. These were compared with models using CA125 threshold levels from 193 patients with ovarian cancer, 290 with benign neoplasm, and 2236 postmenopausal healthy controls. Results: Using a CA125 cutoff of 30 U/mL, an overall sensitivity of 94.8% (96.6% specificity) was obtained when comparing malignancies versus healthy postmenopausal controls, whereas a cutoff of 65 U/mL provided a sensitivity of 83.9% (99.6% specificity). High classification accuracies were obtained for early-stage cancers (93.5% sensitivity). Reasons for high accuracies include recruitment bias, restriction to postmenopausal women, and inclusion of only primary invasive epithelial ovarian cancer cases. The combination of MS profiling information with CA125 did not significantly improve the specificity/accuracy compared with classifications on the basis of CA125 alone. Conclusions: We report unexpectedly good performance of serum CA125 using threshold classification in discriminating healthy controls and women with benign masses from those with invasive ovarian cancer. This highlights the dependence of diagnostic tests on the characteristics of the study population and the crucial need for authors to provide sufficient relevant details to allow comparison. Our study also shows that MS profiling information adds little to diagnostic accuracy. This finding is in contrast with other reports and shows the limitations of serum MS profiling for biomarker discovery and as a diagnostic tool
Resumo:
Safety is an element of extreme priority in mining operations, currently many traditional mining countries are investing in the implementation of wireless sensors capable of detecting risk factors; through early warning signs to prevent accidents and significant economic losses. The objective of this research is to contribute to the implementation of sensors for continuous monitoring inside underground mines providing technical parameters for the design of sensor networks applied in underground coal mines. The application of sensors capable of measuring in real time variables of interest, promises to be of great impact on safety for mining industry. The relationship between the geological conditions and mining method design, establish how to implement a system of continuous monitoring. In this paper, the main causes of accidents for underground coal mines are established based on existing worldwide reports. Variables (temperature, gas, structural faults, fires) that can be related to the most frequent causes of disaster and its relevant measuring range are then presented, also the advantages, management and mining operations are discussed, including the analyzed of applying these systems in terms of Benefit, Opportunity, Cost and Risk. The publication focuses on coal mining, based on the proportion of these events a year worldwide, where a significant number of workers are seriously injured or killed. Finally, a dynamic assessment of safety at underground mines it is proposed, this approach offers a contribution to design personalized monitoring networks, the experience developed in coal mines provides a tool that facilitates the application development of technology within underground coal mines.
Resumo:
Detection of a tactile stimulus on one finger is impaired when a concurrent stimulus (masker) is presented on an additional finger of the same or the opposite hand. This phenomenon is known to be finger-specific at the within-hand level. However, whether this specificity is also maintained at the between-hand level is not known. In four experiments, we addressed this issue by combining a Bayesian adaptive staircase procedure (QUEST) with a two-interval forced choice (2IFC) design in order to establish threshold for detecting 200ms, 100Hz sinusoidal vibrations applied to the index or little fingertip of either hand (targets). We systematically varied the masker finger (index, middle, ring, or little finger of either hand), while controlling the spatial location of the target and masker stimuli. Detection thresholds varied consistently as a function of the masker finger when the latter was on the same hand (Experiments 1 and 2), but not when on different hands (Experiments 3 and 4). Within the hand, detection thresholds increased for masker fingers closest to the target finger (i.e., middle>ring when the target was index). Between the hands, detection thresholds were higher only when the masker was present on any finger as compared to when the target was presented in isolation. The within hand effect of masker finger is consistent with the segregation of different fingers at the early stages of somatosensory processing, from the periphery to the primary somatosensory cortex (SI). We propose that detection is finger-specific and reflects the organisation of somatosensory receptive fields in SI within, but not between the hands.
Resumo:
Aim To develop a brief, parent-completed instrument (‘ERIC’) for detection of cognitive delay in 10-24 month-olds born preterm, or with low birth weight, or with perinatal complications, and to establish its diagnostic properties. Method Scores were collected from parents of 317 children meeting ≥1 inclusion criteria (birth weight <1500g; gestational age <34 completed weeks; 5-minute Apgar <7; presence of hypoxic-ischemic encephalopathy) and meeting no exclusion criteria. Children were assessed for cognitive delay using a criterion score on the Bayley Scales of Infant and Toddler Development Cognitive Scale III1 <80. Items were retained according to their individual associations with delay. Sensitivity, specificity, Positive and Negative Predictive Values were estimated and a truncated ERIC was developed for use <14 months. Results ERIC detected 17 out of 18 delayed children in the sample, with 94.4% sensitivity (95% CI [confidence interval] 83.9-100%), 76.9% specificity (72.1-81.7%), 19.8% positive predictive value (11.4-28.2%); 99.6% negative predictive value (98.7-100%); 4.09 likelihood ratio positive; and 0.07 likelihood ratio negative; the associated Area under the Curve was .909 (.829-.960). Interpretation ERIC has potential value as a quickly-administered diagnostic instrument for the absence of early cognitive delay in preterm or premature infants of 10-24 months, and as a screen for cognitive delay. Further research may be needed before ERIC can be recommended for wide-scale use.
Resumo:
This thesis explores the possibility of directly detecting blackbody emission from Primordial Black Holes (PBHs). A PBH might form when a cosmological density uctuation with wavenumber k, that was once stretched to scales much larger than the Hubble radius during ination, reenters inside the Hubble radius at some later epoch. By modeling these uctuations with a running{tilt power{law spectrum (n(k) = n0 + a1(k)n1 + a2(k)n2 + a3(k)n3; n0 = 0:951; n1 = ????0:055; n2 and n3 unknown) each pair (n2,n3) gives a di erent n(k) curve with a maximum value (n+) located at some instant (t+). The (n+,t+) parameter space [(1:20,10????23 s) to (2:00,109 s)] has t+ = 10????23 s{109 s and n+ = 1:20{2:00 in order to encompass the formation of PBHs in the mass range 1015 g{1010M (from the ones exploding at present to the most massive known). It was evenly sampled: n+ every 0.02; t+ every order of magnitude. We thus have 41 33 = 1353 di erent cases. However, 820 of these ( 61%) are excluded (because they would provide a PBH population large enough to close the Universe) and we are left with 533 cases for further study. Although only sub{stellar PBHs ( 1M ) are hot enough to be detected at large distances we studied PBHs with 1015 g{1010M and determined how many might have formed and still exist in the Universe. Thus, for each of the 533 (n+,t+) pairs we determined the fraction of the Universe going into PBHs at each epoch ( ), the PBH density parameter (PBH), the PBH number density (nPBH), the total number of PBHs in the Universe (N), and the distance to the nearest one (d). As a rst result, 14% of these (72 cases) give, at least, one PBH within the observable Universe, one{third being sub{stellar and the remaining evenly spliting into stellar, intermediate mass and supermassive. Secondly, we found that the nearest stellar mass PBH might be at 32 pc, while the nearest intermediate mass and supermassive PBHs might be 100 and 1000 times farther, respectively. Finally, for 6% of the cases (four in 72) we might have substellar mass PBHs within 1 pc. One of these cases implies a population of 105 PBHs, with a mass of 1018 g(similar to Halley's comet), within the Oort cloud, which means that the nearest PBH might be as close as 103 AU. Such a PBH could be directly detected with a probability of 10????21 (cf. 10????32 for low{energy neutrinos). We speculate in this possibility.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives:The aim of this in vitro study was to assess the inter- and intra-examiner reproducibility and the accuracy of the International Caries Detection and Assessment System-II (ICDAS-II) in detecting occlusal caries.Methods:One hundred and sixty-three molars were independently assessed twice by two experienced dentists using the 0- to 6-graded ICDAS-II. The teeth were histologically prepared and classified using two different histological systems [Ekstrand et al. (1997) Caries Research vol. 31, pp. 224-231; Lussi et al. (1999) Caries Research vol. 33, pp. 261-266] and assessed for caries extension. Sensitivity, specificity, accuracy and area under the ROC curve (A(z)) were obtained at D(2) and D(3) thresholds. Unweighted kappa coefficient was used to assess inter- and intra-examiner reproducibility.Results:For the Ekstrand et al. histological classification the sensitivity was 0.99 and 1.00, specificity 1.00 and 0.69 and accuracy 0.99 and 0.76 at D(2) and D(3), respectively. For the Lussi et al. histological classification the sensitivity was 0.91 and 0.75, specificity 0.47 and 0.62 and accuracy 0.86 and 0.68 at D(2) and D(3), respectively. The A(z) varied from 0.54 to 0.73. The inter- and intra-examiner kappa values were 0.51 and 0.58, respectively.Conclusions:ICDAS-II presented good reproducibility and accuracy in detecting occlusal caries, especially caries lesions in the outer half of the enamel.