917 resultados para drug targeting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: P2Y12 antagonist therapy improves outcomes in acute myocardial infarction (MI) patients. Novel agents in this class are now available in the US. We studied the introduction of prasugrel into contemporary MI practice to understand the appropriateness of its use and assess for changes in antiplatelet management practices. METHODS AND RESULTS: Using ACTION Registry-GWTG (Get-with-the-Guidelines), we evaluated patterns of P2Y12 antagonist use within 24 hours of admission in 100 228 ST elevation myocardial infarction (STEMI) and 158 492 Non-ST elevation myocardial infarction (NSTEMI) patients at 548 hospitals between October 2009 and September 2012. Rates of early P2Y12 antagonist use were approximately 90% among STEMI and 57% among NSTEMI patients. From 2009 to 2012, prasugrel use increased significantly from 3% to 18% (5% to 30% in STEMI; 2% to 10% in NSTEMI; P for trend <0.001 for all). During the same period, we observed a decrease in use of early but not discharge P2Y12 antagonist among NSTEMI patients. Although contraindicated, 3.0% of patients with prior stroke received prasugrel. Prasugrel was used in 1.9% of patients ≥75 years and 4.5% of patients with weight <60 kg. In both STEMI and NSTEMI, prasugrel was most frequently used in patients at the lowest predicted risk for bleeding and mortality. Despite lack of supporting evidence, prasugrel was initiated before cardiac catheterization in 18% of NSTEMI patients. CONCLUSIONS: With prasugrel as an antiplatelet treatment option, contemporary practice shows low uptake of prasugrel and delays in P2Y12 antagonist initiation among NSTEMI patients. We also note concerning evidence of inappropriate use of prasugrel, and inadequate targeting of this more potent therapy to maximize the benefit/risk ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic mycobacteria induce the formation of complex cellular aggregates called granulomas that are the hallmark of tuberculosis. Here we examine the development and consequences of vascularization of the tuberculous granuloma in the zebrafish-Mycobacterium marinum infection model, which is characterized by organized granulomas with necrotic cores that bear striking resemblance to those of human tuberculosis. Using intravital microscopy in the transparent larval zebrafish, we show that granuloma formation is intimately associated with angiogenesis. The initiation of angiogenesis in turn coincides with the generation of local hypoxia and transcriptional induction of the canonical pro-angiogenic molecule Vegfaa. Pharmacological inhibition of the Vegf pathway suppresses granuloma-associated angiogenesis, reduces infection burden and limits dissemination. Moreover, anti-angiogenic therapies synergize with the first-line anti-tubercular antibiotic rifampicin, as well as with the antibiotic metronidazole, which targets hypoxic bacterial populations. Our data indicate that mycobacteria induce granuloma-associated angiogenesis, which promotes mycobacterial growth and increases spread of infection to new tissue sites. We propose the use of anti-angiogenic agents, now being used in cancer regimens, as a host-targeting tuberculosis therapy, particularly in extensively drug-resistant disease for which current antibiotic regimens are largely ineffective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The Affordable Care Act encourages healthcare systems to integrate behavioral and medical healthcare, as well as to employ electronic health records (EHRs) for health information exchange and quality improvement. Pragmatic research paradigms that employ EHRs in research are needed to produce clinical evidence in real-world medical settings for informing learning healthcare systems. Adults with comorbid diabetes and substance use disorders (SUDs) tend to use costly inpatient treatments; however, there is a lack of empirical data on implementing behavioral healthcare to reduce health risk in adults with high-risk diabetes. Given the complexity of high-risk patients' medical problems and the cost of conducting randomized trials, a feasibility project is warranted to guide practical study designs. METHODS: We describe the study design, which explores the feasibility of implementing substance use Screening, Brief Intervention, and Referral to Treatment (SBIRT) among adults with high-risk type 2 diabetes mellitus (T2DM) within a home-based primary care setting. Our study includes the development of an integrated EHR datamart to identify eligible patients and collect diabetes healthcare data, and the use of a geographic health information system to understand the social context in patients' communities. Analysis will examine recruitment, proportion of patients receiving brief intervention and/or referrals, substance use, SUD treatment use, diabetes outcomes, and retention. DISCUSSION: By capitalizing on an existing T2DM project that uses home-based primary care, our study results will provide timely clinical information to inform the designs and implementation of future SBIRT studies among adults with multiple medical conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Detoxification often serves as an initial contact for treatment and represents an opportunity for engaging patients in aftercare to prevent relapse. However, there is limited information concerning clinical profiles of individuals seeking detoxification, and the opportunity to engage patients in detoxification for aftercare often is missed. This study examined clinical profiles of a geographically diverse sample of opioid-dependent adults in detoxification to discern the treatment needs of a growing number of women and whites with opioid addiction and to inform interventions aimed at improving use of aftercare or rehabilitation. METHODS: The sample included 343 opioid-dependent patients enrolled in two national multi-site studies of the National Drug Abuse Treatment Clinical Trials Network (CTN001-002). Patients were recruited from 12 addiction treatment programs across the nation. Gender and racial/ethnic differences in addiction severity, human immunodeficiency virus (HIV) risk, and quality of life were examined. RESULTS: Women and whites were more likely than men and African Americans to have greater psychiatric and family/social relationship problems and report poorer health-related quality of life and functioning. Whites and Hispanics exhibited higher levels of total HIV risk scores and risky injection drug use scores than African Americans, and Hispanics showed a higher level of unprotected sexual behaviors than whites. African Americans were more likely than whites to use heroin and cocaine and to have more severe alcohol and employment problems. CONCLUSIONS: Women and whites show more psychopathology than men and African Americans. These results highlight the need to monitor an increased trend of opioid addiction among women and whites and to develop effective combined psychosocial and pharmacologic treatments to meet the diverse needs of the expanding opioid-abusing population. Elevated levels of HIV risk behaviors among Hispanics and whites also warrant more research to delineate mechanisms and to reduce their risky behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Edoxaban, an oral direct factor Xa inhibitor, is in development for thromboprophylaxis, including prevention of stroke and systemic embolism in patients with atrial fibrillation (AF). P-glycoprotein (P-gp), an efflux transporter, modulates absorption and excretion of xenobiotics. Edoxaban is a P-gp substrate, and several cardiovascular (CV) drugs have the potential to inhibit P-gp and increase drug exposure. OBJECTIVE: To assess the potential pharmacokinetic interactions of edoxaban and 6 cardiovascular drugs used in the management of AF and known P-gp substrates/inhibitors. METHODS: Drug-drug interaction studies with edoxaban and CV drugs with known P-gp substrate/inhibitor potential were conducted in healthy subjects. In 4 crossover, 2-period, 2-treatment studies, subjects received edoxaban 60 mg alone and coadministered with quinidine 300 mg (n = 42), verapamil 240 mg (n = 34), atorvastatin 80 mg (n = 32), or dronedarone 400 mg (n = 34). Additionally, edoxaban 60 mg alone and coadministered with amiodarone 400 mg (n = 30) or digoxin 0.25 mg (n = 48) was evaluated in a single-sequence study and 2-cohort study, respectively. RESULTS: Edoxaban exposure measured as area under the curve increased for concomitant administration of edoxaban with quinidine (76.7 %), verapamil (52.7 %), amiodarone (39.8 %), and dronedarone (84.5 %), and exposure measured as 24-h concentrations for quinidine (11.8 %), verapamil (29.1 %), and dronedarone (157.6 %) also increased. Administration of edoxaban with amiodarone decreased the 24-h concentration for edoxaban by 25.7 %. Concomitant administration with digoxin or atorvastatin had minimal effects on edoxaban exposure. CONCLUSION: Coadministration of the P-gp inhibitors quinidine, verapamil, and dronedarone increased edoxaban exposure. Modest/minimal effects were observed for amiodarone, atorvastatin, and digoxin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypoxic tumor microenvironment serves as a niche for maintaining the glioma-initiating cells (GICs) that are critical for glioblastoma (GBM) occurrence and recurrence. Here, we report that hypoxia-induced miR-215 is vital for reprograming GICs to fit the hypoxic microenvironment via suppressing the expression of an epigenetic regulator KDM1B and modulating activities of multiple pathways. Interestingly, biogenesis of miR-215 and several miRNAs is accelerated post-transcriptionally by hypoxia-inducible factors (HIFs) through HIF-Drosha interaction. Moreover, miR-215 expression correlates inversely with KDM1B while correlating positively with HIF1α and GBM progression in patients. These findings reveal a direct role of HIF in regulating miRNA biogenesis and consequently activating the miR-215-KDM1B-mediated signaling required for GIC adaptation to hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro human tissue engineered human blood vessels (TEBV) that exhibit vasoactivity can be used to test human toxicity of pharmaceutical drug candidates prior to pre-clinical animal studies. TEBVs with 400-800 μM diameters were made by embedding human neonatal dermal fibroblasts or human bone marrow-derived mesenchymal stem cells in dense collagen gel. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses within 3 hours after fabrication. After 1 week of perfusion, TEBVs exhibited endothelial release of nitric oxide, phenylephrine-induced vasoconstriction, and acetylcholine-induced vasodilation, all of which were maintained up to 5 weeks in culture. Vasodilation was blocked with the addition of the nitric oxide synthase inhibitor L-N(G)-Nitroarginine methyl ester (L-NAME). TEBVs elicited reversible activation to acute inflammatory stimulation by TNF-α which had a transient effect upon acetylcholine-induced relaxation, and exhibited dose-dependent vasodilation in response to caffeine and theophylline. Treatment of TEBVs with 1 μM lovastatin for three days prior to addition of Tumor necrosis factor - α (TNF-α) blocked the injury response and maintained vasodilation. These results indicate the potential to develop a rapidly-producible, endothelialized TEBV for microphysiological systems capable of producing physiological responses to both pharmaceutical and immunological stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All biological phenomena depend on molecular recognition, which is either intermolecular like in ligand binding to a macromolecule or intramolecular like in protein folding. As a result, understanding the relationship between the structure of proteins and the energetics of their stability and binding with others (bio)molecules is a very interesting point in biochemistry and biotechnology. It is essential to the engineering of stable proteins and to the structure-based design of pharmaceutical ligands. The parameter generally used to characterize the stability of a system (the folded and unfolded state of the protein for example) is the equilibrium constant (K) or the free energy (deltaG(o)), which is the sum of enthalpic (deltaH(o)) and entropic (deltaS(o)) terms. These parameters are temperature dependent through the heat capacity change (deltaCp). The thermodynamic parameters deltaH(o) and deltaCp can be derived from spectroscopic experiments, using the van't Hoff method, or measured directly using calorimetry. Along with isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) is a powerful method, less described than ITC, for measuring directly the thermodynamic parameters which characterize biomolecules. In this article, we summarize the principal thermodynamics parameters, describe the DSC approach and review some systems to which it has been applied. DSC is much used for the study of the stability and the folding of biomolecules, but it can also be applied in order to understand biomolecular interactions and can thus be an interesting technique in the process of drug design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freeze-dried (lyophilised) wafers and solvent cast films from sodium alginate (ALG) and sodium carboxymethylcellulose (CMC) have been developed as potential drug delivery systems for mucosal surfaces including wounds. The wafers (ALG, CMC) and films (CMC) were prepared by freeze-drying and drying in air (solvent evaporation) respectively, aqueous gels of the polymers containing paracetamol as a model drug. Microscopic architecture was examined using scanning electron microscopy, hydration characteristics with confocal laser scanning microscopy and dynamic vapour sorption. Texture analysis was employed to investigate mechanical characteristics of the wafers during compression. Differential scanning calorimetry was used to investigate polymorphic changes of paracetamol occurring during formulation of the wafers and films. The porous freeze-dried wafers exhibited higher drug loading and water absorption capacity than the corresponding solvent evaporated films. Moisture absorption, ease of hydration and mechanical behaviour were affected by the polymer and drug concentration. Two polymorphs of paracetamol were observed in the wafers and films, due to partial conversion of the original monoclinic to the orthorhombic polymorph during the formulation process. The results showed the potential of employing the freeze-dried wafers and solvent evaporated films in diverse mucosal applications due to their ease of hydration and based on different physical mechanical properties exhibited by both type of formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to simultaneously follow the diffusion of model drugs and solvent across polydimethylsiloxane (silicone) membrane. Three model drugs, cyanophenol (CNP), methyl nicotinate (MN) and butyl paraben (BP) were selected to cover a range of lipophilicities. Isostearyl isostearate (ISIS) was chosen as the solvent because its large molecular weight should facilitate observation of whether the drug molecules are able to diffuse through the membrane independently of the solvent. The diffusion of the three drugs and the solvent was successfully described by a Fickian model. The effects of parameters such as the absorption wavelength used to follow diffusion on the calculated diffusion coefficient were investigated. Absorption wavelength which affects the depth of penetration of the infrared radiation into the membrane did not significantly affect the calculated diffusion coefficient over the wavelength range tested. Each of the model drugs was observed to diffuse independently of the solvent across the membrane. The diffusion of a CNP-ISIS hydrogen bonded complex across the membrane was also monitored. The relative diffusion rates of the solute and solvent across the membrane can largely be accounted for by the molecular size of the permeant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: A novel methodology has been introduced to effectively coat intravascular stents with sirolimus-loaded polymeric microparticles. Methods: Dry powders of the microparticulate formulation, consisting of non-erodible polymers, were produced by a supercritical, aerosol, solvent extraction system (ASES). A design of experiment (DOE) approach was conducted on the independent variables, such as organic/CO2 phase volume ratio, polymer weight and stirring-rate, while regression analysis was utilized to interpret the influence of all operational parameters on the dependent variable of particle size. The dry powders, so formed, entered an electric field created by corona charging and were sprayed on the earthed metal stent. Furthermore, the thermal stability of sirolimus was investigated to define the optimum conditions for fusion to the metal surfaces. Results: The electrostatic dry powder deposition technology (EDPDT) was used on the metal strut followed by fusion to produce uniform, reproducible and accurate coatings. The coated stents exhibited sustained release profiles over 25 days, similar to commercial products. EDPDT-coated stents displayed significant reduced platelet adhesion. Conclusions: EDPDT appeared to be a robust accurate and reproducible technology to coat eluting stents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally stimulated current (TSC) spectroscopy is attracting increasing attention as a means of materials characterization, particularly in terms of measuring slow relaxation processes in solid samples. However, wider use of the technique within the pharmaceutical field has been inhibited by difficulties associated with the interpretation of TSC data, particularly in terms of deconvoluting dipolar relaxation processes from charge distribution phenomena. Here, we present evidence that space charge and electrode contact effects may play a significant role in the generation of peaks that have thus far proved difficult to interpret. We also introduce the use of a stabilization temperature in order to control the space charge magnitude. We have studied amorphous indometacin as a model drug compound and have varied the measurement parameters (stabilization and polarization temperatures), interpreting the changes in spectral composition in terms of charge redistribution processes. More specifically, we suggested that charge drift and diffusion processes, charge injection from the electrodes and high activation energy charge redistribution processes may all contribute to the appearance of shoulders and 'spurious' peaks. We present recommendations for eliminating or reducing these effects that may allow more confident interpretation of TSC data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the current study was to evaluate the potential of the dynamic lipolysis model to simulate the absorption of a poorly soluble model drug compound, probucol, from three lipid-based formulations and to predict the in vitro-in vivo correlation (IVIVC) using neuro-fuzzy networks. An oil solution and two self-micro and nano-emulsifying drug delivery systems were tested in the lipolysis model. The release of probucol to the aqueous (micellar) phase was monitored during the progress of lipolysis. These release profiles compared with plasma profiles obtained in a previous bioavailability study conducted in mini-pigs at the same conditions. The release rate and extent of release from the oil formulation were found to be significantly lower than from SMEDDS and SNEDDS. The rank order of probucol released (SMEDDS approximately SNEDDS > oil formulation) was similar to the rank order of bioavailability from the in vivo study. The employed neuro-fuzzy model (AFM-IVIVC) achieved significantly high prediction ability for different data formations (correlation greater than 0.91 and prediction error close to zero), without employing complex configurations. These preliminary results suggest that the dynamic lipolysis model combined with the AFM-IVIVC can be a useful tool in the prediction of the in vivo behavior of lipid-based formulations.