957 resultados para distance function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an approach to enhance the Extra High Voltage (EHV) Transmission system distance protection is presented. The scheme depends on the apparent impedance seen by the distance relay during the disturbance. In a distance relay,the impedance seen at the relay location is calculated from the fundamental frequency component of the voltage and current signals. Support Vector Machines (SVMs) are a new learning-byexample are employed in discriminating zone settings (Zone-1,Zone-2 and Zone-3) using the signals to be used by the relay.Studies on 265-bus system, an equivalent of practical Indian Western grid are presented for illustrating the proposed scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterizing the functional connectivity between neurons is key for understanding brain function. We recorded spikes and local field potentials (LFPs) from multielectrode arrays implanted in monkey visual cortex to test the hypotheses that spikes generated outward-traveling LFP waves and the strength of functional connectivity depended on stimulus contrast, as described recently. These hypotheses were proposed based on the observation that the latency of the peak negativity of the spike-triggered LFP average (STA) increased with distance between the spike and LFP electrodes, and the magnitude of the STA negativity and the distance over which it was observed decreased with increasing stimulus contrast. Detailed analysis of the shape of the STA, however, revealed contributions from two distinct sources-a transient negativity in the LFP locked to the spike (similar to 0 ms) that attenuated rapidly with distance, and a low-frequency rhythm with peak negativity similar to 25 ms after the spike that attenuated slowly with distance. The overall negative peak of the LFP, which combined both these components, shifted from similar to 0 to similar to 25 ms going from electrodes near the spike to electrodes far from the spike, giving an impression of a traveling wave, although the shift was fully explained by changing contributions from the two fixed components. The low-frequency rhythm was attenuated during stimulus presentations, decreasing the overall magnitude of the STA. These results highlight the importance of accounting for the network activity while using STAs to determine functional connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes on a region in Euclidean space, e.g., the unit square. After deployment, the nodes self-organise into a mesh topology. In a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this paper, we analyse the performance of this approximation. We show that nodes with a certain hop distance from a fixed anchor node lie within a certain annulus with probability approach- ing unity as the number of nodes n → ∞. We take a uniform, i.i.d. deployment of n nodes on a unit square, and consider the geometric graph on these nodes with radius r(n) = c q ln n n . We show that, for a given hop distance h of a node from a fixed anchor on the unit square,the Euclidean distance lies within [(1−ǫ)(h−1)r(n), hr(n)],for ǫ > 0, with probability approaching unity as n → ∞.This result shows that it is more likely to expect a node, with hop distance h from the anchor, to lie within this an- nulus centred at the anchor location, and of width roughly r(n), rather than close to a circle whose radius is exactly proportional to h. We show that if the radius r of the ge- ometric graph is fixed, the convergence of the probability is exponentially fast. Similar results hold for a randomised lattice deployment. We provide simulation results that il- lustrate the theory, and serve to show how large n needs to be for the asymptotics to be useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altitude variations of the mass concentration of black carbon, number concentration of composite aerosols are examined along with the columnar spectral aerosol optical depths using state of the art instruments and the Angstrom parameters are inferred from the ground based measurements at several altitude levels, en route from Manora Peak, Nainital (similar to 1950 m above mean sea level) to a low altitude station Haldwani (similar to 330 m above mean sea level) at its foothill within an aerial distance of <10,000 m. The measurements were done during the winter months (November-February) of 2005, 2006 and 2007 under fair weather conditions. The results show a rapid decrease in all the measured parameters with increase in altitude, with >60% contribution to the AOD coming from the regions below 1000 m. The Angstrom wavelength exponent remained high in the well mixed region, and decreased above. The normalized AOD gradient was used to estimate aerosol mixing height, which was found to be in the altitude range 1000-1500 m, above which the particle concentrations are slowly varying as a function of altitude. The heating rate at the surface is found to be maximum but decreases sharply with increase in altitude. Analysis of the wavelength dependence of absorption aerosol optical depth (AAOD) showed that the aerosol absorption over the site is generally due to mixed aerosols. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor network applications such as environmental monitoring demand that the data collection process be carried out for the longest possible time. Our paper addresses this problem by presenting a routing scheme that ensures that the monitoring network remains connected and hence the live sensor nodes deliver data for a longer duration. We analyze the role of relay nodes (neighbours of the base-station) in maintaining network connectivity and present a routing strategy that, for a particular class of networks, approaches the optimal as the set of relay nodes becomes larger. We then use these findings to develop an appropriate distributed routing protocol using potential-based routing. The basic idea of potential-based routing is to define a (scalar) potential value at each node in the network and forward data to the neighbor with the highest potential. We propose a potential function and evaluate its performance through simulations. The results show that our approach performs better than the well known lifetime maximization policy proposed by Chang and Tassiulas (2004), as well as AODV [Adhoc on demand distance vector routing] proposed by Perkins (1997).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents an adaptive Fourier filtering technique and a relaying scheme based on a combination of a digital band-pass filter along with a three-sample algorithm, for applications in high-speed numerical distance protection. To enhance the performance of above-mentioned technique, a high-speed fault detector has been used. MATLAB based simulation studies show that the adaptive Fourier filtering technique provides fast tripping for near faults and security for farther faults. The digital relaying scheme based on a combination of digital band-pass filter along with three-sample data window algorithm also provides accurate and high-speed detection of faults. The paper also proposes a high performance 16-bit fixed point DSP (Texas Instruments TMS320LF2407A) processor based hardware scheme suitable for implementation of the above techniques. To evaluate the performance of the proposed relaying scheme under steady state and transient conditions, PC based menu driven relay test procedures are developed using National Instruments LabVIEW software. The test signals are generated in real time using LabVIEW compatible analog output modules. The results obtained from the simulation studies as well as hardware implementations are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology termed the “filtered density function” (FDF) is developed and implemented for large eddy simulation (LES) of chemically reacting turbulent flows. In this methodology, the effects of the unresolved scalar fluctuations are taken into account by considering the probability density function (PDF) of subgrid scale (SGS) scalar quantities. A transport equation is derived for the FDF in which the effect of chemical reactions appears in a closed form. The influences of scalar mixing and convection within the subgrid are modeled. The FDF transport equation is solved numerically via a Lagrangian Monte Carlo scheme in which the solutions of the equivalent stochastic differential equations (SDEs) are obtained. These solutions preserve the Itô-Gikhman nature of the SDEs. The consistency of the FDF approach, the convergence of its Monte Carlo solution and the performance of the closures employed in the FDF transport equation are assessed by comparisons with results obtained by direct numerical simulation (DNS) and by conventional LES procedures in which the first two SGS scalar moments are obtained by a finite difference method (LES-FD). These comparative assessments are conducted by implementations of all three schemes (FDF, DNS and LES-FD) in a temporally developing mixing layer and a spatially developing planar jet under both non-reacting and reacting conditions. In non-reacting flows, the Monte Carlo solution of the FDF yields results similar to those via LES-FD. The advantage of the FDF is demonstrated by its use in reacting flows. In the absence of a closure for the SGS scalar fluctuations, the LES-FD results are significantly different from those based on DNS. The FDF results show a much closer agreement with filtered DNS results. © 1998 American Institute of Physics.