949 resultados para discrete logarithms
Resumo:
"Excerpt Minutes of proceedings of the Institution of Civil Engineers, vol. lxv. Session 1880-81. Part iii."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Previous studies found larger attentional modulation of acoustic blinks during task-relevant than during task-irrelevant acoustic or visual, but not tactile, lead stimuli. Moreover, blink modulation was larger overall during acoustic lead stimuli. The present experiment investigated whether these results reflect modality specificity of attentional blink modulation or effects of continuous stimulation. Participants performed a discrimination and counting task with acoustic, visual, or tactile lead stimuli. Stimuli were presented Sustained or consisted of two short discrete stimuli. The sustained condition replicated previous results. In the discrete condition, blinks were larger during task-relevant than during task-irrelevant stimuli in all groups regardless of lead stimulus modality. Thus, previous results that seemed consistent with modality-specific accounts of attentional blink modulation reflect effects of continuous stimulus input.
Resumo:
We present an analysis of the free vibration of plates with internal discontinuities due to central cut-outs. A numerical formulation for a basic L-shaped element which is divided into appropriate sub-domains that are dependent upon the location of the cut-out is used as the basic building element. Trial functions formed to satisfy certain boundary conditions are employed to define the transverse deflection of each sub-domain. Mathematical treatments in terms of the continuities in displacement, slope, moment, and higher derivatives between the adjacent sub-domains are enforced at the interconnecting edges. The energy functional results, from the proper assembly of the coupled strain and kinetic energy contributions of each sub-domain, are minimized via the Ritz procedure to extract the vibration frequencies and. mode shapes of the plates. The procedures are demonstrated by considering plates with central cut-outs that are subjected to two types of boundary conditions. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Preventive maintenance actions over the warranty period have an impact on the warranty servicing cost to the manufacturer and the cost to the buyer of fixing failures over the life of the product after the warranty expires. However, preventive maintenance costs money and is worthwhile only when these costs exceed the reduction in other costs. The paper deals with a model to determine when preventive maintenance actions (which rejuvenate the unit) carried out at discrete time instants over the warranty period are worthwhile. The cost of preventive maintenance is borne by the buyer. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To examine the relationship between the auditory brain-stem response (ABR) and its reconstructed waveforms following discrete wavelet transformation (DWT), and to comment on the resulting implications for ABR DWT time-frequency analysis. Methods: ABR waveforms were recorded from 120 normal hearing subjects at 90, 70, 50, 30, 10 and 0 dBnHL, decomposed using a 6 level discrete wavelet transformation (DWT), and reconstructed at individual wavelet scales (frequency ranges) A6, D6, D5 and D4. These waveforms were then compared for general correlations, and for patterns of change due to stimulus level, and subject age, gender and test ear. Results: The reconstructed ABR DWT waveforms showed 3 primary components: a large-amplitude waveform in the low-frequency A6 scale (0-266.6 Hz) with its single peak corresponding in latency with ABR waves III and V; a mid-amplitude waveform in the mid-frequency D6 scale (266.6-533.3 Hz) with its first 5 waves corresponding in latency to ABR waves 1, 111, V, VI and VII; and a small-amplitude, multiple-peaked waveform in the high-frequency D5 scale (533.3-1066.6 Hz) with its first 7 waves corresponding in latency to ABR waves 1, 11, 111, IV, V, VI and VII. Comparisons between ABR waves 1, 111 and V and their corresponding reconstructed ABR DWT waves showed strong correlations and similar, reliable, and statistically robust changes due to stimulus level and subject age, gender and test ear groupings. Limiting these findings, however, was the unexplained absence of a small number (2%, or 117/6720) of reconstructed ABR DWT waves, despite their corresponding ABR waves being present. Conclusions: Reconstructed ABR DWT waveforms can be used as valid time-frequency representations of the normal ABR, but with some limitations. In particular, the unexplained absence of a small number of reconstructed ABR DWT waves in some subjects, probably resulting from 'shift invariance' inherent to the DWT process, needs to be addressed. Significance: This is the first report of the relationship between the ABR and its reconstructed ABR DWT waveforms in a large normative sample. (C) 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
We revisit the one-unit gradient ICA algorithm derived from the kurtosis function. By carefully studying properties of the stationary points of the discrete-time one-unit gradient ICA algorithm, with suitable condition on the learning rate, convergence can be proved. The condition on the learning rate helps alleviate the guesswork that accompanies the problem of choosing suitable learning rate in practical computation. These results may be useful to extract independent source signals on-line.
Resumo:
The organisation of the human neuromuscular-skeletal system allows an extremely wide variety of actions to be performed, often with great dexterity. Adaptations associated with skill acquisition occur at all levels of the neuromuscular-skeletal system although all neural adaptations are inevitably constrained by the organisation of the actuating apparatus (muscles and bones). We quantified the extent to which skill acquisition in an isometric task set is influenced by the mechanical properties of the muscles used to produce the required actions. Initial performance was greatly dependent upon the specific combination of torques required in each variant of the experimental task. Five consecutive days of practice improved the performance to a similar degree across eight actions despite differences in the torques required about the elbow and forearm. The proportional improvement in performance was also similar when the actions were performed at either 20 or 40% of participants' maximum voluntary torque capacity. The skill acquired during practice was successfully extrapolated to variants of the task requiring more torque than that required during practice. We conclude that while the extent to which skill can be acquired in isometric actions is independent of the specific combination of joint torques required for target acquisition, the nature of the kinetic adaptations leading to the performance improvement in isometric actions is influenced by the neural and mechanical properties of the actuating muscles.
Resumo:
Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.
Resumo:
A set of DCT domain properties for shifting and scaling by real amounts, and taking linear operations such as differentiation is described. The DCT coefficients of a sampled signal are subjected to a linear transform, which returns the DCT coefficients of the shifted, scaled and/or differentiated signal. The properties are derived by considering the inverse discrete transform as a cosine series expansion of the original continuous signal, assuming sampling in accordance with the Nyquist criterion. This approach can be applied in the signal domain, to give, for example, DCT based interpolation or derivatives. The same approach can be taken in decoding from the DCT to give, for example, derivatives in the signal domain. The techniques may prove useful in compressed domain processing applications, and are interesting because they allow operations from the continuous domain such as differentiation to be implemented in the discrete domain. An image matching algorithm illustrates the use of the properties, with improvements in computation time and matching quality.
Resumo:
We consider a problem of robust performance analysis of linear discrete time varying systems on a bounded time interval. The system is represented in the state-space form. It is driven by a random input disturbance with imprecisely known probability distribution; this distributional uncertainty is described in terms of entropy. The worst-case performance of the system is quantified by its a-anisotropic norm. Computing the anisotropic norm is reduced to solving a set of difference Riccati and Lyapunov equations and a special form equation.