992 resultados para direct operational calculus
Resumo:
A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9. The blow-and-suction disturbance in the upstream wall boundary is used to trigger the transition. Both the mean wall pressure and the velocity profiles agree with those of the experimental data, which validates the simulation. The turbulent kinetic energy budget in the separation region is analyzed. Results show that the turbulent production term increases fast in the separation region, while the turbulent dissipation term reaches its peak in the near-wall region. The turbulent transport term contributes to the balance of the turbulent conduction and turbulent dissipation. Based on the analysis of instantaneous pressure in the downstream region of the mean shock and that in the separation bubble, the authors suggest that the low frequency oscillation of the shock is not caused by the upstream turbulent disturbance, but rather the instability of separation bubble.
Resumo:
Experimental study of a liquid fed direct methanol fuel cell has been conducted in different gravity environments. A small single cell with 5 cm x 5 cm active area has single serpentine channel on the graphite cathode polar plate and 11 parallel straight channels on the graphite anode flow bed. Cell voltage and current have been measured and two-phase flow in anode channels has been in situ visually observed. The experimental results indicate that the effect of gravity on power performance of the direct methanol fuel cell is large when the concentration polarization governs fuel cells operation. Gravitational effect becomes larger at higher current density. Increasing methanol feeding molarity is conducive to weaken the influence of gravity on performance of liquid fed direct methanol fuel cells. Increasing feeding flow rate of methanol solution from 6 to 15 ml/min could reduce the size of carbon dioxide bubbles, while the influence of gravity still exist. Transport phenomena inside direct methanol fuel cells in microgravity is also analyzed and discussed.
Resumo:
Using an oscilloscope, a high-speed video camera and a double-electrostatic probe system, the periodicity and amplitude of the fluctuations in arc voltage, jet luminance and ion saturation current of a plasma jet were monitored to investigate various sources of instabilities and their effects in a non-transferred dc plasma torch operated at reduced pressure. The results show that besides a 300 Hz main fluctuation inherited from the power supply, arc voltage fluctuation of 3–4 kHz with an amplitude less than 5% of the mean voltage was mainly affected by the total gas flow rate. The arc voltage fluctuation can affect the energy distribution of the plasma jet which is detectable by electrostatic probes and a high-speed video camera. The steadiness of energy transfer is also affected by the laminar or turbulent flow state of the plasma.
Resumo:
Because of its high energy density direct current(dc)thermal plasmas are widely accepted as a processing medium which facilitates high processing rates high fluxes of radical species the potential for smaller jnstallations a wide choice of reactants and high quench rates[1].A broad range of industrial processing methods have been developed based on dc plasma technology. However,nonstationary features limited new applications of dc plasma in advanced processing, where reliability£¬reproducibility and precise controllability are required£. These challenges call for better understanding of the arc and jet behavior over a wide range of generating parameters and a comprehensive control of every aspect of lhe plasma processing.
Resumo:
胺及其衍生物是很多重要生物活性分子的结构单元,是合成天然产物和手性药物的重要中间体。 直接还原胺化由于其合成步骤简单而成为制备二级胺和三级胺的简便方法。为了发展一种较为简便的直接还原胺化反应,我们把研究的重点放在开发一种简便实用的有机小分子催化方法上。由文献调研可知,现已报道的直接还原胺化方法大多是催化醛或酮与一级胺或者脂肪二级胺的直接还原胺化,而醛或酮与芳香二级胺的直接还原胺化却尚无报道。在本文中,我们发现用简单的四甲基乙二胺(TEMED)在室温下以二氯甲烷为溶剂即可催化三氯氢硅对酮和芳香二级胺之间的直接还原胺化反应,并取得了高达92%的收率。该反应条件温和,底物普适性广,各种类型的酮均可以与芳香二级胺进行直接还原胺化,并且得到比较满意的收率。 同时,我们从手性Sulfoximine出发,设计和合成了一系列的Sulfoximine类新衍生物,并将其应用于间接还原胺化反应中。遗憾的是我们并没有得到预期的不对称催化效果。 Amines and their derivatives are basic structural motifs in natural products and pharmaceuticals and highly versatile building blocks for various organic substrates. Direct reductive amination (DRA) is a convenient method for the preparation of secondary and tertiary amines owing to its operational simplicity. In an effort to develop a simple and convenient procedure for direct reductive amination reaction, we focused our study on search for a mild and efficient organocatalytic system. In the literature, there are many reports concerning DRA between aldehydes or ketones and either primary amines or secondary aliphatic amines. But there are no reports concerning DRA between aldehydes or ketones and secondary aromatic amines. In this study, we have developed a highly practical method for the synthesis of tertiary amines by the direct reductive amination of ketones and secondary aromatic amines with tetramethylethylenediamine (TEMED) as the catalyst using HSiCl3 as the reducing agent in dichloromethane (affording up to 92% yield). This method can be carried out under mild conditions and is compatible with many functional groups. A variety of ketones were efficiently aminated with secondary aromatic amines to afford the corresponding amines in good to excellent yields. Starting from chiral sulfoximine, we designed and synthesized a series of new sulfoximine derivatives and tested their efficiencies as asymmetric organocatalysts for the reduction of imines, which, unfortunately, only exhibited low catalytic activity and enantioselectivity.
Resumo:
To meet the requirements of providing high-intensity heavy ion beams the direct plasma injection scheme (DPIS) was proposed by a RIKEN-CNS-TIT collaboration. In this scheme a radio frequency quadrupole (RFQ) was joined directly with the laser ion source (LIS) without a low-energy beam transport (LEBT) line. To find the best design of the RFQ that will have short length, high transmission efficiency and small emittance growth, beam dynamics designs with equipartitioning design strategy and with matched-only design strategy have been performed, and a comparison of their results has also been done. Impacts of the input beam parameters on transmission efficiency are presented, too. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Mass measurements of exotic nuclei is a fast, developing field which is essential for basic nuclear physics and a wide range of applications. The method of storage ring mass spectrometry has many advantages: (1) a large amount of nuclides can be simultaneously measured; (2) very short-lived (T-1/2 greater than or similar to 50 mu s) and very rare species (yields down to single ions) can be accessed; (3) nuclides in several atomic charge states can be investigated, (4) half-life measurements can be performed with time-resolved mass spectrometry. In this contribution we concentrate on some recent achievements and future perspectives of the storage ring mass spectrometry.
Resumo:
A study of cooled Au-197 projectile-fragmentation products has been performed with a storage ring. This has enabled metastable nuclear excitations with energies up to 3 MeV, and half-lives extending to minutes or longer, to be identified in the neutron-rich nuclides Hf-183,Hf-184,Hf-186 and Ta-186,Ta-187. The results support the prediction of a strongly favored isomer region near neutron number 116.
Resumo:
Charged-particle spectra associated with direct photon (gamma(dir)) and pi(0) are measured in p + p and Au + Au collisions at center-of-mass energy root(S)(NN) = 200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. A shower-shape analysis is used to partially discriminate between gamma(dir) and pi(0). Assuming no associated charged particles in the gamma(dir) direction ( near side) and small contribution from fragmentation photons (gamma(frag)), the associated charged-particle yields opposite to gamma(dir) (away side) are extracted. In central Au + Au collisions, the charged-particle yields at midrapidity (vertical bar eta vertical bar < 1) and high transverse momentum (3 < (assoc)(PT) < 16 GeV/c) associated with gamma(dir) and pi(0) (vertical bar eta vertical bar < 0.9, 8 < (trig)(PT) < 16 GeV/c) are suppressed by a factor of 3-5 compared with p + p collisions. The observed suppression of the associated charged particles is similar for gamma(dir) and pi(0) and independent of the gamma(dir) energy within uncertainties. These measurements indicate that, in the kinematic range covered and within our current experimental uncertainties, the parton energy loss shows no sensitivity to the parton initial energy, path length, or color charge.
Resumo:
We report a measurement of high-p(T) inclusive pi(0), eta, and direct photon production in p + p and d + Au collisions at root s(NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi(0) -> gamma gamma were detected in the barrel electromagnetic calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross-section measurement by STAR is also presented; the signal was extracted statistically by subtracting the pi(0), eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading-order perturbative QCD calculations.