935 resultados para diluizione,olio,CFD,MCI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simplicity in design and minimal floor space requirements render the hydrocyclone the preferred classifier in mineral processing plants. Empirical models have been developed for design and process optimisation but due to the complexity of the flow behaviour in the hydrocyclone these do not provide information on the internal separation mechanisms. To study the interaction of design variables, the flow behaviour needs to be considered, especially when modelling the new three-product cyclone. Computational fluid dynamics (CFD) was used to model the three-product cyclone, in particular the influence of the dual vortex finder arrangement on flow behaviour. From experimental work performed on the UG2 platinum ore, significant differences in the classification performance of the three-product cyclone were noticed with variations in the inner vortex finder length. Because of this simulations were performed for a range of inner vortex finder lengths. Simulations were also conducted on a conventional hydrocyclone of the same size to enable a direct comparison of the flow behaviour between the two cyclone designs. Significantly, high velocities were observed for the three-product cyclone with an inner vortex finder extended deep into the conical section of the cyclone. CFD studies revealed that in the three-product cyclone, a cylindrical shaped air-core is observed similar to conventional hydrocyclones. A constant diameter air-core was observed throughout the inner vortex finder length, while no air-core was present in the annulus. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A unique hand-held gene gun is employed for ballistically delivering biomolecules to key cells in the skin and mucosa in the treatment of the major diseases. One of these types of devices, called the Contoured Shock Tube (CST), delivers powdered micro-particles to the skin with a narrow and highly controllable velocity distribution and a nominally uniform spatial distribution. In this paper, we apply a numerical approach to gain new insights in to the behavior of the CST prototype device. The drag correlations proposed by Henderson (1976), Igra and Takayama (1993) and Kurian and Das (1997) were applied to predict the micro-particle transport in a numerically simulated gas flow. Simulated pressure histories agree well with the corresponding static and Pitot pressure measurements, validating the CFD approach. The calculated velocity distributions show a good agreement, with the best prediction from Igra & Takayama correlation (maximum discrepancy of 5%). Key features of the gas dynamics and gas-particle interaction are discussed. Statistic analyses show a tight free-jet particle velocity distribution is achieved (570 +/- 14.7 m/s) for polystyrene particles (39 +/- 1 mu m), representative of a drug payload.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The predictions of nonequilibrium radiation in the shock layer for a Titan aerocapture aeroshell vary significantly amongst Computational Fluid Dynamics (CFD) analyses and are limited by the physical models of the nonequilibrium flow processes. Of particular interest are nonequilibrium processes associated with the CN molecule which is a strong radiator. It is necessary to have experimental data for these radiating shock layers which will allow for validation of the CFD models. This paper describes the development of a test flow condition for subscale aeroshell models in a superorbital expansion tunnel. We discuss the need for a Titan gas condition that closely simulates the atmospheric composition and present experimental data of the free stream test flow conditions. Furthermore, we present finite-rate CFD calculations of the facility to estimate the remaining free stream conditions, which cannot be directly measured during experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loss of coolant accidents (LOCA) in the primary cooling circuit of a nuclear reactor may result in damage to insulation materials that are located near to the leak. The insulation materials released may compromise the operation of the emergency core cooling system (ECCS). Insulation material in the form of mineral wool fibre agglomerates (MWFA) maybe transported to the containment sump strainers mounted at the inlet of the emergency cooling pumps, where the insulation fibres may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fibre cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Thus, knowledge of transport characteristics of the damaged insulation materials in various scenarios is required to help plan for the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a LOCA. The study entails the generation of fibre agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effect that corrosion of the containment internals by the coolant has on the strainer pressure drop. The focus of this presentation is on the experiments performed that characterize the horizontal transport of MWFA, whereas the corresponding CFD simulations are described in an accompanying contribution (see abstract of Cartland Glover et al.). The experiments were performed a racetrack type channel that provided a near uniform horizontal flow. The channel is 0.1 wide by 1.2 m high with a straight length of 5 m and two bends of 0.5 m. The measurement techniques include particle imaging (both wide-angle and macro lens), concurrent particle image velocimetry, ultravelocimetry, laser detection sensors to sense the presence of absence of MWFA and pertinent measurements of the MWFA concentration and quiescent settling characteristics. The transport of the MWFA was observed at velocities of 0.1 and 0.25 m s-1 to verify numerical model behaviour in and just beyond expected velocities in the containment sump of a nuclear reactor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Mild cognitive impairment (MCI) is a term used to describe a level of decline in cognition which is seen as an intermediate stage between normal ageing and dementia, and which many consider to be a prodromal stage of neurodegeneration that may become dementia. That is, it is perceived as a high risk level of cognitive change. The increasing burden of dementia in our society, but also our increasing understanding of its risk factors and potential interventions, require diligent management of MCI in order to find strategies that produce effective prevention of dementia. Aim To update knowledge regarding mild cognitive impairment, and to bring together and appraise evidence about the main features of clinical interest: definitions, prevalence and stability, risk factors, screening, and management and intervention. Methods Literature review and consensus of expert opinion. Results and conclusion MCI describes a level of impairment in which deteriorating cognitive functions still allow for reasonable independent living, including some compensatory strategies. While there is evidence for some early risk factors, there is still a need to more precisely delineate and distinguish early manifestations of frank dementia from cognitive impairment that is less likely to progress to dementia, and furthermore to develop improved prospective evidence for positive response to intervention. An important limitation derives from the scarcity of studies that take MCI as an endpoint. Strategies for effective management suffer from the same limitation, since most studies have focused on dementia. Behavioural changes may represent the most cost-effective approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is not known whether the association between increased plasma homocysteine (Hcy) associated with LDL modification and propensity for LDL uptake by macrophages in cardiovascular disease patients holds true in vascular dementia (VaD). Plasma from 83 subjects diagnosed with Alzheimer's disease (AD), VaD, mild cognitive impairment (MCI) and from controls was analysed to examine (1) whether LDL isolated from the plasma of VaD is biochemically and functionally distinct from that isolated from AD, MCI or controls; and (2) whether such biomarkers of LDL phenotype are related to plasma folate levels, Hcy levels and/or to disease severity. Folate and vitamin B6 levels were significantly lower in VaD subjects than in controls. VaD-LDL showed increased protein carbonyl content (p <0.05) and was more susceptible to scavenging by macrophages (p <0.05) than AD- or control-LDL. Patients from the VaD cohort were more prevalent in the lowest tertile for HDL:LDL and the upper tertile for LDL oxidation; the combined parameters of HDL cholesterol, LDL oxidation and scavenging by macrophages show 87% sensitivity towards VaD detection. The association between folate deficiency, LDL modification and dysfunction in VaD but not in AD may provide a novel biomarker assessment to discriminate between the diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations in the containment sump. Two dispersed phases were conditions to determine the influence of entrained air from a jet on the transport of fibre agglomerates through the sump. The strainer model of A. Grahn was implemented to observe the impact that the accumulation of the fibres have on the pressure drop across the strainers. The geometry considered is similar to the containment sump configurations found in Nuclear Power Plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental and theoretical study of the transport of mineral wool fibre agglomerates in nuclear power plant containment sumps is being performed. A racetrack channel was devised to provide data for the validation of numerical models, which are intended to model the transport of fibre agglomerates. The racetrack channel provides near uniform and steady conditions that lead to either the sedimentation or suspension of the agglomerates. Various experimental techniques were used to determine the velocity conditions and the distribution of the fibre agglomerates in the channel. The fibre agglomerates are modelled as fluid particles in the Eulerian reference frame. Simulations of pure sedimentation of a known mass and volume of agglomerations show that the transport of the fibre agglomerates can be replicated. The suspension of the fibres is also replicated in the simulations; however, the definition of the fibre agglomerate phase is strongly dependent on the selected density and diameter. Detailed information on the morphology of the fibre agglomerates is lacking for the suspension conditions, as the fibre agglomerates may undergo breakage and erosion. Therefore, ongoing work, which is described here, is being pursued to improve the experimental characterisation of the suspended transport of the fibre agglomerates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates can represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Application of such a model to sedimentation in a quiescent column and a horizontal flow are examined. The scenario also presents the suspension and horizontal transport of a single fiber agglomerate phase in a racetrack type channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of insulation debris transport, sedimentation, penetration into the reactor core and head loss build up becomes important to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during loss of coolant accidents. Research projects are being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Helmholtz-Zentrum Dresden-Rossendorf. The projects include experimental investigations of different processes and phenomena of insulation debris in coolant flow and the development of CFD models. Generic complex experiments serve for building up a data base for the validation of models for single effects and their coupling in CFD codes. This paper includes the description of the experimental facility for complex generic experiments (ZSW), an overview about experimental boundary conditions and results for upstream and down-stream phenomena as well as for the long-time behaviour due to corrosive processes. © Carl Hanser Verlag, München.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various micro-radial compressor configurations were investigated using one-dimensional meanline and computational fluid dynamics (CFD) techniques for use in a micro gas turbine (MGT) domestic combined heat and power (DCHP) application. Blade backsweep, shaft speed, and blade height were varied at a constant pressure ratio. Shaft speeds were limited to 220 000 r/min, to enable the use of a turbocharger bearing platform. Off-design compressor performance was established and used to determine the MGT performance envelope; this in turn was used to assess potential cost and environmental savings in a heat-led DCHP operating scenario within the target market of a detached family home. A low target-stage pressure ratio provided an opportunity to reduce diffusion within the impeller. Critically for DCHP, this produced very regular flow, which improved impeller performance for a wider operating envelope. The best performing impeller was a low-speed, 170 000 r/min, low-backsweep, 15° configuration producing 71.76 per cent stage efficiency at a pressure ratio of 2.20. This produced an MGT design point system efficiency of 14.85 per cent at 993 W, matching prime movers in the latest commercial DCHP units. Cost and CO2 savings were 10.7 per cent and 6.3 per cent, respectively, for annual power demands of 17.4 MWht and 6.1 MWhe compared to a standard condensing boiler (with grid) installation. The maximum cost saving (on design point) was 14.2 per cent for annual power demands of 22.62 MWht and 6.1 MWhe corresponding to an 8.1 per cent CO2 saving. When sizing, maximum savings were found with larger heat demands. When sized, maximum savings could be made by encouraging more electricity export either by reducing household electricity consumption or by increasing machine efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years structured packings have become more widely used in the process industries because of their improved volumetric efficiency. Most structured packings consist of corrugated sheets placed in the vertical plane The corrugations provide a regular network of channels for vapour liquid contact. Until recently it has been necessary to develop new packings by trial and error, testing new shapes in the laboratory. The orderly repetitive nature of the channel network produced by a structured packing suggests it may be possible to develop improved structured packings by the application of computational fluid dynamics (CFD) to calculate the packing performance and evaluate changes in shape so as to reduce the need for laboratory testing. In this work the CFD package PHOENICS has been used to predict the flow patterns produced in the vapour phase as it passes through the channel network. A particular novelty of the approach is to set up a method of solving the Navier Stokes equations for any particular intersection of channels. The flow pattern of the streams leaving the intersection is then made the input to the downstream intersection. In this way the flow pattern within a section of packing can be calculated. The resulting heat or mass transfer performance can be calculated by other standard CFD procedures. The CFD predictions revealed a circulation developing within the channels which produce a loss in mass transfer efficiency The calculations explained and predicted a change in mass transfer efficiency with depth of the sheets. This effect was also shown experimentally. New shapes of packing were proposed to remove the circulation and these were evaluated using CFD. A new shape was chosen and manufactured. This was tested experimentally and found to have a higher mass transfer efficiency than the standard packing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations into the modelling techniques that depict the transport of discrete phases (gas bubbles or solid particles) and model biochemical reactions in a bubble column reactor are discussed here. The mixture model was used to calculate gas-liquid, solid-liquid and gasliquid-solid interactions. Multiphase flow is a difficult phenomenon to capture, particularly in bubble columns where the major driving force is caused by the injection of gas bubbles. The gas bubbles cause a large density difference to occur that results in transient multi-dimensional fluid motion. Standard design procedures do not account for the transient motion, due to the simplifying assumptions of steady plug flow. Computational fluid dynamics (CFD) can assist in expanding the understanding of complex flows in bubble columns by characterising the flow phenomena for many geometrical configurations. Therefore, CFD has a role in the education of chemical and biochemical engineers, providing the examples of flow phenomena that many engineers may not experience, even through experimentation. The performance of the mixture model was investigated for three domains (plane, rectangular and cylindrical) and three flow models (laminar, k-e turbulence and the Reynolds stresses). mThis investigation raised many questions about how gas-liquid interactions are captured numerically. To answer some of these questions the analogy between thermal convection in a cavity and gas-liquid flow in bubble columns was invoked. This involved modelling the buoyant motion of air in a narrow cavity for a number of turbulence schemes. The difference in density was caused by a temperature gradient that acted across the width of the cavity. Multiple vortices were obtained when the Reynolds stresses were utilised with the addition of a basic flow profile after each time step. To implement the three-phase models an alternative mixture model was developed and compared against a commercially available mixture model for three turbulence schemes. The scheme where just the Reynolds stresses model was employed, predicted the transient motion of the fluids quite well for both mixture models. Solid-liquid and then alternative formulations of gas-liquid-solid model were compared against one another. The alternative form of the mixture model was found to perform particularly well for both gas and solid phase transport when calculating two and three-phase flow. The improvement in the solutions obtained was a result of the inclusion of the Reynolds stresses model and differences in the mixture models employed. The differences between the alternative mixture models were found in the volume fraction equation (flux and deviatoric stress tensor terms) and the viscosity formulation for the mixture phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis describes experimental work on the possibility of using deflection baffles in conventional distillation trays as flow straightening devices, with the view of enhancing tray efficiency. The mode of operation is based on deflecting part of the liquid momentum from the centre of the tray to the segment regions in order to drive stagnating liquid at the edges forward. The first part of the work was a detailed investigation into the two-phase flow patterns produced on a conventional sieve tray having 1 mm hole size perforations. The data provide a check on some earlier work and extend the range of the existing databank, particularly to conditions more typical of industrial operation. A critical survey of data collected on trays with different hole sizes (Hine, 1990; Chambers, 1993; Fenwick, 1996; this work) showed that the hole diameter has a significant influence on the flow regime, the size of the stagnant regions and the hydraulic and mass transfer performance. Five modified tray topologies were created with different configurations of baffles and tested extensively in the 2.44 m diameter air-water pilot distillation simulator for their efficacy in achieving uniform flow across the tray and for their impact on tray loading capacity and mass transfer efficiency. Special attention was given to the calibration of the over 100 temperature probes used in measuring the water temperature across the tray on which the heat and mass transfer analogy is based. In addition to normal tray capacity experiments, higher weir load experiments were conducted using a 'half-tray' mode in order to extend the range of data to conditions more typical of industrial operation. The modified trays show superior flow characteristics compared to the conventional tray in terms of the ability to replenish the zones of exceptionally low temperatures and high residence times at the edges of the tray, to lower the bulk liquid gradient and to achieve a more uniform flow across the tray. These superior flow abilities, however, tend to diminish with increasing weir load because of the increasing tendency for the liquid to jump over the barriers instead of flowing over them. The modified tray topologies showed no tendency to cause undue limitation to tray loading capacity. Although the improvement in the efficiency of a single tray over that of the conventional tray was moderate and in some cases marginal, the multiplier effect in a multiple tray column situation would be significant (Porter et al., 1972). These results are in good agreement with an associated CFD studies (Fischer, 1999) carried out by partners in the Advanced Studies in Distillation consortium. It is concluded that deflection baffles can be used in a conventional distillation sieve tray to achieve better liquid flow distribution and obtain enhanced mass transfer efficiency, without undermining the tray loading capacity. Unlike any other controlled-flow tray whose mechanical complexity impose stringent manufacturing and installation tolerances, the baffled-tray models are simple to design, manufacture and install and thus provide an economic method of retrofitting badly performing sieve trays both in terms of downtime and fabrication. NOTE APPENDICES 2-5 ARE ON A SEPARATE FLOPPY DISK ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents significant development into chaotic mixing induced through periodic boundaries and twisting flows. Three-dimensional closed and throughput domains are shown to exhibit chaotic motion under both time periodic and time independent boundary motions, A property is developed originating from a signature of chaos, sensitive dependence to initial conditions, which successfully quantifies the degree of disorder withjn the mixing systems presented and enables comparisons of the disorder throughout ranges of operating parameters, This work omits physical experimental results but presents significant computational investigation into chaotic systems using commercial computational fluid dynamics techniques. Physical experiments with chaotic mixing systems are, by their very nature, difficult to extract information beyond the recognition that disorder does, does not of partially occurs. The initial aim of this work is to observe whether it is possible to accurately simulate previously published physical experimental results through using commercial CFD techniques. This is shown to be possible for simple two-dimensional systems with time periodic wall movements. From this, and subsequent macro and microscopic observations of flow regimes, a simple explanation is developed for how boundary operating parameters affect the system disorder. Consider the classic two-dimensional rectangular cavity with time periodic velocity of the upper and lower walls, causing two opposing streamline motions. The degree of disorder within the system is related to the magnitude of displacement of individual particles within these opposing streamlines. The rationale is then employed in this work to develop and investigate more complex three-dimensional mixing systems that exhibit throughputs and time independence and are therefore more realistic and a significant advance towards designing chaotic mixers for process industries. Domains inducing chaotic motion through twisting flows are also briefly considered. This work concludes by offering possible advancements to the property developed to quantify disorder and suggestions of domains and associated boundary conditions that are expected to produce chaotic mixing.